37 resultados para Candidate genes

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated clubfoot, a common birth defect occurring in more than 135,000 livebirths worldwide each year, is associated with significant health care and financial burdens. Clubfoot is defined by forefoot adduction, hindfoot varus, midfoot cavus and hindfoot equinus. Isolated clubfoot, which is the focus of these studies, is distinct from syndromic clubfoot because there are no other associated malformations. Population, family, twin and segregation analysis studies provide evidence that genetic and environmental factors play an etiologic role in isolated clubfoot. The studies described in this thesis were performed to define the role of genetic variation in isolated clubfoot. Interrogation of a deletion region associated with syndromic clubfoot, suggested that CASP8 and CASP10, two apoptotic genes, play a role in isolated clubfoot. To explore the role of apoptotic genes in clubfoot, SNPs spanning genes involved in the apoptotic pathway in the six chromosomal deletion regions, and limb patterning genes, HOXD and HOXA, were interrogated. SNPs in mitochondrial mediated apoptotic genes and several SNPs in HOXA and HOXD genes were modestly associated with clubfoot with the most significant SNP, rs3801776, located in the basal promoter of HOXA9. Several significant associations were found with SNPs in NFAT2 and TNIP2. Significant gene interactions were detected between SNPs in HOX and apoptotic genes. These findings suggest a model for clubfoot in which variation in one gene is not sufficient to cause the malformation but requires variation several genes to perturb protein expression sufficiently to alter muscle and foot development. These results significantly impact our knowledge base by delineating underlying mechanisms causing clubfoot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic etiology of stroke likely reflects the influence of multiple loci with small effects, each modulating different pathophysiological processes. This research project utilized three analytical strategies to address the paucity of information related to the identification and characterization of genetic variation associated with stroke in the general population. ^ First, the general contribution of familial factors to stroke susceptibility was evaluated in a population-based sample of unrelated individuals. Increased risk of subclinical cerebral infarction was observed among individuals with a positive parental history of stroke. This association did not appear to be mediated by established stroke risk factors, specifically blood pressure levels or hypertension status. ^ The need to identify specific gene variation associated with stroke in the general population was addressed by evaluating seven candidate gene polymorphisms in a population-based sample of unrelated individuals. Three polymorphisms were significantly associated with increased subclinical cerebral infarction or incident clinical ischemic stroke risk. These relationships include the G-protein β3 subunit 825C/T polymorphism and clinical stroke in Whites, the lipoprotein lipase S/X447 polymorphism and subclinical and clinical stroke in men, and the angiotensin I-converting enzyme Ins/Del polymorphism and subclinical stroke in White men. These associations did not appear to be obfuscated by the stroke risk factors adjusted for in the analysis models specifically blood pressure levels or anti-hypertensive medication use. ^ The final research strategy considered, on a genome-wide scale, the idea that genetic variation may contribute to the occurrence of hypertension or stroke through a common etiologic pathway. Genomic regions were identified for which significant evidence of heterogeneity was observed among hypertensive sibpairs stratified by family history of stroke information. Regions identified on chromosome 15 in African Americans, and chromosome 13 in Whites and African Americans, suggest the presence of genes influencing hypertension and stroke susceptibility. ^ Insight into the role of genetics in stroke is useful for the potential early identification of individuals at increased risk for stroke and improved understanding of the etiology of the disease. The ultimate goal of these endeavors is to guide the development of therapeutic intervention and informed prevention to provide a lasting and positive impact on public health. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect with a multifactorial etiology. Despite decades of research, the genetic underpinnings of NSCLP still remain largely unexplained. A genome wide association study (GWAS) of a large NSCLP African American family with seven affected individuals across three generations found evidence for linkage at 8q21.3-24.12 (LOD = 2.98). This region contained three biologically relevant candidate genes: Frizzled-6 (FZD6) (LOD = 2.8), Matrilin-2 (MATN2) (LOD = 2.3), and Solute Carrier Family 25, Member 32 (SLC26A32) (LOD = 1.6). Sequencing of the coding regions and the 5’ and 3’ UTRs of these genes in two affected family members identified a rare intronic variant, rs138557689 (c.-153+432A>C), in FZD6. The rs138557689/C allele segregated with the NSCLP phenotype; in silico analysis predicted and EMSA analysis showed that the 138557689/C allele creates new DNA binding sites. FZD6 is part of the WNT pathway, which is involved in craniofacial development, including midface development and upper lip fusion. Our novel findings suggest that an alteration in FZD6 gene regulation may perturb this tightly controlled biological pathway and in turn contribute to the development of NSCLP in this family. Studies are underway to further define how the rs138557689/C variant affects expression of FZD6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although more than 100 genes associated with inherited retinal disease have been mapped to chromosomal locations, less than half of these genes have been cloned. This text includes identification and evaluation of candidate genes for three autosomal dominant forms of inherited retinal degeneration: atypical vitelliform macular dystrophy (VMD1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP). ^ VMD1 is a disorder characterized by complete penetrance but extremely variable expressivity, and includes macular or peripheral retinal lesions and peripappilary abnormalitites. In 1984, linkage was reported between VMD1 and soluble glutamate-pyruvate transaminase GPT); however, placement of GPT to 8q24 on linkage maps had been debated, and VMD1 did not show linkage to microsatellite markers in that region. This study excluded linkage between the loci by cloning GPT, identifying the nucleotide substitution associated with the GPT sozymes, and by assaying VMD1 family samples with an RFLP designed to detect the substitution. In addition, linkage of VMD1 to the known dominant macular degeneration loci was excluded. ^ CORD is characterized by early onset of color-vision deficiency, and decreased visual acuity, However, this retinal degeneration progresses to no light perception, severe macular lesion, and “bone-spicule” accumulations in the peripheral retina. In this study, the disorder in a large Texan family was mapped to the CORD2 locus of 19q13, and a mutation in the retina/pineal-specific cone-rod homeobox gene (CRX) was identified as the disease cause. In addition, mutations in CRX were associated with significantly different retinal disease phenotypes, including retinitis pigmentosa and Leber congenital amaurosis. ^ Many of the mutations leading to inherited retinal disorders have been identified in genes like CRX, which are expressed predominantly in the retina and pineal gland. Therefore, a combination of database analysis and laboratory investigation was used to identify 26 novel retina/pineal-specific expressed sequence tag (EST) clusters as candidate genes for inherited retinal disorders. Eight of these genes were mapped into the candidate regions of inherited retinal degeneration loci. ^ Two of the eight clusters mapped into the retinitis pigmentosa RP13 candidate region of 17p13, and were both determined to represent a single gene that is highly expressed in photoreceptors. This gene, the Ah receptor-interacting like protein-1 (AIPL1), was cloned, characterized, and screened for mutations in RP13 patient DNA samples. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequent loss of heterozygosity (LOH) at specific chromosomal regions are highly associated with the inactivation of tumor suppressor genes (TSGs) (Weinberg, 1991; Bishop, 1989). Chromosome 8p is the most frequently reported site of LOH (∼60%) in prostate cancer (PC), suggesting that there may be inactivated TSG(s) involved in PC on chromosome 8p. (Bergerheim et. al., 1991; Kagan et. al., 1995). In order to identify the smallest common regions of frequent LOH (SCLs) on chromosome 8, we screened 52 PC patient/tumor samples with 39 polymorphic markers in successive screenings. In the course of refining the SCLs, we identified 3 tumors with >6 Mb homozygous deletions (HZDs) at 8p22 and 8p21, suggesting the presence of candidate TSGs at both loci. These HZDs spanned the two SCLs at 8p22 (46%) and 8p21 (45%). The SCLs were narrowed to 3.2 cM at 8p22 and less than 3 cM at 8p21. ^ In order to identify candidate TSGs within the SCLs on 8p, two approaches were used. In the candidate gene approach, thirty genes that mapped to the SCLs were evaluated for expression in normal prostate and in PC cell lines. One of the candidate genes, Clusterin, showed decreased expression in 4/7 (57%) prostate cancer cell lines by Northern blot analysis. Clusterin will be further examined as a candidate TSG. ^ The second approach involved utilizing subtractive hybridization and hybrid affinity capture to generate pools of expressed sequence tags (ESTs) enriched for genes that are downregulated or deleted in PC and that map to specific regions of interest. We took advantage of a prostate cancer cell line (PC3) with a known HZD of a candidate TSG, CTNNA1 on 5q31, to develop and validate a model system. We then developed subtracted libraries enriched for 8p22 and 8p21 ESTs by this method, using two cell lines, MDAPCa-2b and PC3. The ESTs were cloned, and 40 were sequenced and evaluated for expression in normal prostate and PC cell lines. Three ESTs from the subtracted libraries, C2, C17 and F12, showed decreased expression in 29–57% of the prostate tumor cell lines studied, and will be further examined as candidate TSGs. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following up genetic linkage studies to identify the underlying susceptibility gene(s) for complex disease traits is an arduous yet biologically and clinically important task. Complex traits, such as hypertension, are considered polygenic with many genes influencing risk, each with small effects. Chromosome 2 has been consistently identified as a genomic region with genetic linkage evidence suggesting that one or more loci contribute to blood pressure levels and hypertension status. Using combined positional candidate gene methods, the Family Blood Pressure Program has concentrated efforts in investigating this region of chromosome 2 in an effort to identify underlying candidate hypertension susceptibility gene(s). Initial informatics efforts identified the boundaries of the region and the known genes within it. A total of 82 polymorphic sites in eight positional candidate genes were genotyped in a large hypothesis-generating sample consisting of 1640 African Americans, 1339 whites, and 1616 Mexican Americans. To adjust for multiple comparisons, resampling-based false discovery adjustment was applied, extending traditional resampling methods to sibship samples. Following this adjustment for multiple comparisons, SLC4A5, a sodium bicarbonate transporter, was identified as a primary candidate gene for hypertension. Polymorphisms in SLC4A5 were subsequently genotyped and analyzed for validation in two populations of African Americans (N = 461; N = 778) and two of whites (N = 550; N = 967). Again, SNPs within SLC4A5 were significantly associated with blood pressure levels and hypertension status. While not identifying a single causal DNA sequence variation that is significantly associated with blood pressure levels and hypertension status across all samples, the results further implicate SLC4A5 as a candidate hypertension susceptibility gene, validating previous evidence for one or more genes on chromosome 2 that influence hypertension related phenotypes in the population-at-large. The methodology and results reported provide a case study of one approach for following up the results of genetic linkage analyses to identify genes influencing complex traits. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Idiopathic or isolated clubfoot is a common orthopedic birth defect that affects approximately 135,000 children worldwide. It is characterized by equinus, varus and adductus deformities of the ankle and foot. Correction of clubfoot involves months of serial manipulations, castings and bracing, with surgical correction needed in forty percent of cases. Multifactorial etiology has been suggested in numerous studies with both environmental and genetic factors playing an etiologic role. Maternal smoking during pregnancy is the only common environmental factor that has consistently been shown to increase the risk for clubfoot. Moreover, a positive family history of clubfoot and maternal smoking increases the risk of clubfoot twenty fold. These findings suggest that genetic variation in smoking metabolism genes may increase susceptibility to clubfoot. Based on this reasoning, we interrogated eight candidate genes, chosen based on their involvement in phase 1 and 2 cigarette smoke metabolism. Twenty-two SNPs and two null alleles in eight genes (CYP1A1, CYP1A2, CYP1B1, CYP2A6, EPHX1, NAT2, GSTM1 and GSTT1) were genotyped in a dataset composed of nonHispanic white and Hispanic multiplex and simplex families. Only one SNP in CYP1A1, rs1048943, had significantly altered transmission in the aggregate and multiplex NHW datasets (p=0.003 and p=0.009). Perturbation of CYP1A1 by rs1048943 polymorphism causes an increase in the amount of harmful, adduct forming metabolic intermediates. A significant gene interaction between EPHX1 and NAT2 was also found (p=0.007). This interaction may affect the metabolism of harmful metabolic intermediates. Additionally, marginal interactions were found for other xenobiotic genes and these interactions may play a contributory role in clubfoot. Importantly, for CYP1A2, significant maternal (p=0.03; RR=1.24; 95% CI: 1.04-1.44) and fetal (p=0.01; RR=1.33; 95% CI: 1.13-1.54) genotypic effects were identified suggesting that both maternal and fetal genotypes impact normal limb development. No association was found for maternal smoking status and tobacco metabolism genes. Together, these results suggest that xenobiotic metabolism genes may play a contributory role in the etiology of clubfoot regardless of maternal smoking status and may impact foot development through perturbation of tobacco metabolic pathways.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The authors test single nucleotide polymorphisms (SNPs) in coding sequences of 12 candidate genes involved in glucose metabolism and obesity for associations with spina bifida. Genotyping was performed on 507 children with spina bifida and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and spina bifida in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found ( P = .019, .039, and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to spina bifida.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Renin-Angiotensin system (RAS) regulates blood pressure through its effects on vascular tone, renal hemodynamics, and renal sodium and fluid balance. The genes encoding the four major components of the RAS, angiotensinogen, renin, angiotensin I-converting enzyme (ACE), and angiotensin II receptor type 1 (AT1), have been investigated as candidate genes in the pathogenesis of essential hypertension. However, studies have primarily focused on small samples of diseased individuals, and, therefore, have provided little information about the determinants of interindividual variation in blood pressure (BP) in the general population.^ Using data from a large population-based sample from Rochester, MN, I have evaluated the contribution of variation in the region of the RAS genes to interindividual variation in systolic, diastolic, and mean arterial pressure in the population-at-large. Marker genotype data from four polymorphisms located within or very near these genes were first collected on 3,974 individuals from 583 randomly ascertained three-generation pedigrees. Haseman-Elston regression and variance component methods of linkage analysis were then carried out to estimate the proportion of interindividual variance in BP attributable to the effects of variation at these four measured loci.^ A significant effect of the ACE locus on interindividual variation in mean arterial pressure (MAP) was detected in a sample of siblings belonging to the youngest generation. After allowing for measured covariates, this effect accounted for 15-25% of the interindividual variance in MAP, and was even greater in a subset with a positive family history of hypertension. When gender-specific analyses were carried out, this effect was significant in males but not in females. Extended pedigree analyses also provided evidence for an effect of the ACE locus on interindividual variation in MAP, but no difference between males and females was observed. Circumstantial evidence suggests that the ACE gene itself may be responsible for the observed effects on BP, although the possibility that other genes in the region may be at play cannot be excluded.^ No definitive evidence for an effect of the renin, angiotensinogen, or AT1 loci on interindividual variation in BP was obtained in this study, suggesting that the impact of these genes on BP may not be great in the Caucasian population-at-large. However, this does not preclude a larger effect of these genes in some subsets of individuals, especially among those with clinically manifest hypertension or coronary heart disease, or in other populations. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To identify genetic susceptibility loci for severe diabetic retinopathy, 286 Mexican-Americans with type 2 diabetes from Starr County, Texas completed detailed physical and ophthalmologic examinations including fundus photography for diabetic retinopathy grading. 103 individuals with moderate-to-severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy were defined as cases for this study. DNA samples extracted from study subjects were genotyped using the Affymetrix GeneChip® Human Mapping 100K Set, which includes 116,204 single nucleotide polymorphisms (SNPs) across the whole genome. Single-marker allelic tests and 2- to 8-SNP sliding-window Haplotype Trend Regression implemented in HelixTreeTM were first performed with these direct genotypes to identify genes/regions contributing to the risk of severe diabetic retinopathy. An additional 1,885,781 HapMap Phase II SNPs were imputed from the direct genotypes to expand the genomic coverage for a more detailed exploration of genetic susceptibility to diabetic retinopathy. The average estimated allelic dosage and imputed genotypes with the highest posterior probabilities were subsequently analyzed for associations using logistic regression and Fisher's Exact allelic tests, respectively. To move beyond these SNP-based approaches, 104,572 directly genotyped and 333,375 well-imputed SNPs were used to construct genetic distance matrices based on 262 retinopathy candidate genes and their 112 related biological pathways. Multivariate distance matrix regression was then used to test hypotheses with genes and pathways as the units of inference in the context of susceptibility to diabetic retinopathy. This study provides a framework for genome-wide association analyses, and implicated several genes involved in the regulation of oxidative stress, inflammatory processes, histidine metabolism, and pancreatic cancer pathways associated with severe diabetic retinopathy. Many of these loci have not previously been implicated in either diabetic retinopathy or diabetes. In summary, CDC73, IL12RB2, and SULF1 had the best evidence as candidates to influence diabetic retinopathy, possibly through novel biological mechanisms related to VEGF-mediated signaling pathway or inflammatory processes. While this study uncovered some genes for diabetic retinopathy, a comprehensive picture of the genetic architecture of diabetic retinopathy has not yet been achieved. Once fully understood, the genetics and biology of diabetic retinopathy will contribute to better strategies for diagnosis, treatment and prevention of this disease.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mendelian inheritance of genetic mutations can lead to adult-onset cardiovascular disease. Several genetic loci have been mapped for the familial form of Thoracic Aortic Aneurysms (TAA), and many causal mutations have been identified for this disease. Intracranial Aneurysms (ICA) also show linkage heterogeneity, but no mutations have been identified causing familial ICA alone. Here, we characterized a large family (TAA288) with an autosomal dominant pattern of inherited aneurysms. It is intriguing that female patients predominantly present with ICA and male patients predominantly with TAA in this family. To identify a causal mutation in this family, a genome-wide linkage analysis was previously performed on nine members of this family using the 50k GenChips Hind array from Affymetrix. This analysis eventually identified a single disease-segregating locus, on chromosome 5p15. We build upon this previous analysis in this study, hypothesizing that a genetic mutation inherited in this locus leads to the sex-specific phenotype of TAA and ICA in this family First we refined the boundaries of the 5p15 disease linked locus down to the genomic coordinates 5p15: 3,424,465- 6,312,925 (GRCh37/hg19 Assembly). This locus was named the TAA288 critical interval. Next, we sequenced candidate genes within the TAA288 critical interval. The selection of genes was simplified by the relatively small number of well-characterized genetic elements within the region. Seeking novel or rare disease-segregating variants, we initially observed a single point alteration in the metalloproteinase gene ADAMTS16 fulfilling this criteria. This variant was later classified as a low-frequency population polymorphism (rs72647757), but we continued to explore the potential role of the ADAMTS16 as the cause of disease in TAA288. We observed that fibroblasts cultured from TAA288 patients consistently upregulated the expression of this gene more strongly compared to matched control fibroblasts when treated with the cytokine TGF-β1, though there was some variation in the exact nature of this expression. We also observed evidence that this protein is expressed at elevated levels in aortic aneurysm tissue from patients with mutations in the gene TGFBR2 and Marfan syndrome, shown by immunohistochemical detection of this protein.