4 resultados para Brain Metastasis

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain metastasis, which occurs in 40%-60% of patients with advanced melanoma, has led directly to death in the majority of cases. Unfortunately, little is known about the biological and molecular basis of melanoma brain metastases. In our previous study, we developed a model to study human melanoma brain metastasis and found that Stat3 activity was increased in human brain metastatic melanoma cells when compared with that in cutaneous melanoma cells. The increased activation of Stat3 is also responsible for affecting melanoma angiogenesis in vivo and melanoma cell invasion in vitro and significantly affecting the expression of bFGF, VEGF, and MMP-2 in vivo and in vitro. Interestingly, a member of a new family of cytokine-inducible inhibitors of signal transduction, termed suppressors of cytokine signaling 1 (SOCS1) was found to negatively regulate the Janus kinase signal transducer and activator of transcription (Jak/STAT) signaling cascade. Here we report that restoration of SOCS1 expression by transfecting of SOCS1-expressing vector effectively inhibited melanoma brain metastasis through inhibiting Stat3 activation and further affecting melanoma angiogenesis and melanoma cell invasion in vitro, and significantly affected the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) in vitro and in vivo. In addition, we used cDNA array to compare mRNA expression in the SOCS1-transfected and vector-transfected cell lines and found some genes are tightly correlated to the restoration of SOCS1. One of them is Caveolin-1 (Cav-1). Cav-1 was reported to function as a tumor suppressor gene by several groups. Finally, the Cav-1 expression is up-regulated in SOCS1-overexpressing cell line. Further study found the regulation of Cav-1 by SOCS1 occurs through inhibiting Stat3 activation. Activated Stat3 binds directly to Cav-1 promoter and the Cav-1 promoter within -575bp is essential for active Stat3 binding. My studies reveal that Stat3 activation and SOCS1 expression play important roles in melanoma metastases. Moreover, the expression between SOCS1, Stat3 and Cav-1 forms a feedback regulation loop. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain metastasis is resistant to chemotherapy while the leaky blood-brain-barrier in brain metastasis can not be the underlying reason. Metastatic tumor cells (“seed”) exploit the host microenvironment (“soil”) for survival advantages. Astrocytes which maintain the homeostasis of the brain microenvironment become reactive subsequent to brain damages and protect neurons from various injuries. We observed reactive astrocytes surrounding and infiltrating into brain metastasis in both clinical specimen and experimental animal model, thus raising a possibility that reactive astrocytes may protect tumor cells from cytotoxic chemotherapeutic drugs. ^ To test this hypothesis, we first generated an immortalized astrocyte cell line from H-2Kb-tsA58 mice. The immortal mouse astrocytes expressed specific markers including GFAP. Scanning electron microscopy demonstrated that astrocytes formed direct physical contact with tumor cells. Moreover, the expression of GFAP by astrocytes was up-regulated subsequent to co-culture with tumor cells, indicating that the co-culture of astrocytes and tumor cells may serve as a model to recapitulate the pathophysiological situation of brain metastasis. ^ In co-culture, astrocytes dramatically reduced apoptosis of tumor cells produced by various chemotherapeutic drugs. This protection effect was not because of culturing cells from different species since mouse fibroblasts did not protect tumor cells from chemotherapy. Furthermore, the protection by astrocytes was completely dependent on a physical contact. ^ Gap junctional communication (GJC) served as this physical contact. Tumor cells and astrocytes both expressed the major component of gap junctional channel—connexin 43 and formed functional GJC as evidenced by the “dye transfer” assay. The blockage of GJC between tumor cells and astrocytes by either specific chemical blocker carbenoxolone (CBX) or by genetically knocking down connexin 43 on astrocytes reversed the chemo-protection. ^ Calcium was the signal molecule transmitted through GJC that rescued tumor cells from chemotherapy. Accumulation of cytoplasmic calcium preceded the progress of apoptosis in tumor cells treated with chemotherapeutic drugs. Furthermore, chelation of accumulated cytoplasmic calcium inhibited the apoptosis of tumor cells treated with chemotherapeutic drugs. Most importantly, astrocytes could “shunt” the accumulated cytoplasmic calcium from tumor cells (treated with chemotherapeutic drug) through GJC. We also used gene expression micro-array to investigate global molecular consequence of tumor cells forming GJC with astrocytes. The data demonstrated that astrocytes (but not fibroblasts), through GJC, up-regulated the expressions of several well known survival genes in tumor cells. ^ In summary, this dissertation provides a novel mechanism underlying the resistance of brain metastasis to chemotherapy, which is due to protection by astrocytes through GJC. Interference with the GJC between astrocytes and tumor cells holds great promise in sensitizing brain metastasis to chemotherapy and improving the prognosis for patients with brain metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain metastasis is a common cause of mortality in cancer patients. Approximately 20-30% of breast cancer patients acquire brain metastasis, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF- IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that the IGF-IR signaling axis is constitutively active in brain-seeking sublines of breast cancer cells, driving an increase in in vitro metastatic properties. We demonstrate that IGF-IR signaling is activated in an autocrine manner as a result of IGFBP3 overexpression in brain-seeking cells. Transient and stable knockdown of IGF-IR results in a downregulation of IGF-IR downstream signaling through phospho-AKT, as well as decreased in vitro migration and invasion of MDA- MB-231Br brain-seeking cells. Using an in vivo experimental brain metastasis model, we show that IGF-IR ablation attenuates the establishment of brain metastases and prolongs survival. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Primary brain neoplasms and metastases to the brain are generally resistant to systemic chemotherapy. The purpose of theses studies was to determine the mechanism(s) for this resistance. We have developed a model to study the biology of brain metastasis by injecting metastatic K1735 melanoma cells into the carotid artery of syngeneic C3H/HeN or nude mice. The resulting brain lesions are produced in the parenchyma of the brain. Mice with subcutaneous or brain melanoma lesions were treated intravenously with doxorubicin (DXR) (7 mg/kg). The s.c. lesions regressed in most of the mice whereas no therapeutic benefits were produced in mice with brain metastases. The intravenous injection of sodium fluorescine revealed that the blood-brain barrier (BBB) is intact in and around brain metastases smaller than 0.2 mm$\sp2$ but not in larger lesions, implying that the BBB is not a major obstacle for chemotherapy of brain metastases.^ Western blot and FACS analyses revealed that K1735 melanoma brain metastases expressed high levels of P-glycoprotein (P-gp) as compared to s.c. tumors or in vitro cultures. Similarly, K1735 cells from brain metastases expressed higher levels of mdrl mRNA. This increased expression of mdrl was due to adaptation to the local brain environment. We base this conclusion on the results of two studies. First, K1735 cells from brain metastases cultured for 7 days lost the high mdrl expression. Second, in crossover experiments K1735 cells from s.c. tumors (low mdrl expression) implanted into the brain exhibited high levels of mdrl expression whereas cells from brain metastases implanted s.c. lost the high level mdrl expression.^ To investigate the mechanism by which the brain environment upregulates mdrl expression of the K1735 cells we first studied the regulation of P-gp in brain endothelial cells. Since astrocytes are closely linked with the BBB we cocultured brain endothelial cells for 3 days with astrocytes. These endothelial cells expressed high levels of mdrl mRNA and protein whereas endothelial cells cocultured with endothelial cells or fibroblasts did not. We next cocultured K1735 melanoma cells with astrocytes. Here again, astrocytes (but not fibroblasts or tumor cells) uprelated the mdrl expression in K1735 tumor cells. This upregulation inversely correlated with intracellular drug accumulation and sensitivity to DXR.^ The data conclude that the resistance of melanoma brain metastases to chemotherapy is not due to an intact BBB but to the upregulation of the mdrl gene by the organ microenvironment, i.e., the astrocytes. This epigenetic mediated resistance to chemotherapy has wide implications for the therapy of brain metastases. ^