28 resultados para purine nucleoside phosphorylase
Resumo:
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by the accumulation of terminally differentiated, mature B cells that do not progress beyond the G1 stage of cell cycle, suggesting that these cells possess intrinsic defects in apoptosis. Treatment relies heavily on chemotherapy (primarily nucleoside analogs and glucocorticoids) that may initially be effective in patients, but ultimately give rise to refractory, untreatable disease. The purpose of this study was to determine whether key components of the apoptotic machinery were intact in CLL lymphocytes, especially in patients refractory to therapy. ^ Activation of proteases has been shown to be at the core of the apoptotic pathway and this work demonstrates that protease activation is required for glucocorticoid and nucleoside analog-induced apoptosis in CLL cells. Inhibitors of serine proteases as well as caspase inhibitors blocked induced DNA fragmentation, and a peptide inhibitor of the nuclear scaffold (NS) protease completely suppressed both induced and spontaneous apoptosis. However, the NS protease inhibitor actually promoted several pro-apoptotic events, such as caspase activation, exposure of surface phosphatidylserine, and loss of mitochondrial membrane potential. These results suggested that the NS protease may interact with the apoptotic program in CLL cells at two separate points. ^ In order to further investigate the role of the NS protease in CLL, patient isolates were treated with proteasome inhibitors because of previous results suggesting that the ISIS protease might be a β subunit of the proteasome. Proteasome inhibitors induced massive DNA fragmentation in every patient tested, even in those resistant to the effects of glucocorticoid and nucleoside analogs in vitro. Several other features of apoptosis were also promoted by the proteasome inhibitor, including mitochondrial alterations such as release of cytochrome c and drops in mitochondrial membrane potential. Proteasome inhibitor-induced apoptosis was associated with inhibition of NFκB, a proteasome-regulated transcription factor that has been implicated in the suppression of apoptosis in a number of systems. The NS protease inhibitor also caused a decrease in active NFκB, suggesting that the proapoptotic effects of this agent might be due to depletion of NFκB. ^ Given these findings, the role of NFκB, in conferring survival in CLL was investigated. Glucocorticoid hormone treatment was shown to cause decreases in the activity of the transcription factor, while phorbol dibutyrate, which blocks glucocorticoid-induced DNA fragmentation, was capable of upregulating NFκB. Compellingly, introduction of an undegradable form of the constitutive NFκB inhibitor, IκB, caused DNA fragmentation in several patient isolates, some of which were resistant to glucocorticoid in vitro. Transcription of anti-apoptotic proteins by NFκB was postulated to be responsible for its effects on survival, but Bcl-2 levels did not fluctuate with glucocorticoid or proteasome inhibitor treatment. ^ The in vitro values generated from these studies were organized into a database containing numbers for over 250 patients. Correlation of relevant clinical parameters revealed that levels of spontaneous apoptosis in vitro differ significantly between Rai stages. Importantly, in vitro resistance to nucleoside analogs or glucocorticoids predicted resistance to chemotherapy in vivo, and inability to achieve remission. ^
Resumo:
Studies with 9-(beta)-D-arabinfuranosyladenine (ara-A) have illustrated that there are numerous cell functions which are affected by the nucleoside analog and its metabolites. Although the precise mechanism responsible for the cytotoxicity of this drug is not known, it is presently thought tha
Resumo:
9-β-D-arabinosylguanine (ara-G), an analogue of deoxyguanosine, has demonstrated T-lymphoblast selective anti-leukemia activity both in vitro and in vivo in cell lines and primary cells and in phase I investigations. The present work was initiated to identify factors that result in this selectivity. ^ The cytotoxicity of ara-G is manifest only after its phosphorylation. Experiments using cell lines transfected to overexpress specific nucleoside kinases demonstrated that the phosphorylation of ara-G to its monophosphate is by both cytoplasmic deoxycytidine kinase and mitochondria) deoxyguanosine kinase. Ara-G monophosphate is converted to its 5′-triphosphate (ara-GTP) in cells by these kinases and then incorporated into DNA. Mechanistic studies demonstrated that incorporation of ara-GTP into DNA was a necessary event for the induction of cell death. ^ Pharmacokinetic and pharmacodynamic studies utilizing three human acute leukemia cell lines, CEM (T-lymphoblastic), Raji (B-lymphoblastic), and ML-1 (myeloid) were performed. CEM cells were most sensitive to ara-G-induced inhibition of colony formation, accumulated ara-GTP at a faster rate and to a greater degree than either Raji or ML-1, but incorporated the lowest number of ara-G molecules into DNA. The position of incorporation was internal and similar in all cell lines. The terminal elimination phase of ara-GTP was >24 h and similar in these cells. Comparisons between inhibition of colony formation and ara-GTP incorporation into DNA demonstrated that while within a cell line there was correlation among these parameters, between cell lines there was no relationship between number of incorporated ara-G molecules and ara-G(TP)-mediated toxicity suggesting that there were additional factors. ^ The expression of membrane bound Fas and Fast was unchanged in all cell lines. In contrast, there was a 2-fold increase in soluble Fast, which was found exclusively in CEM cells. Ara-G-mediated apoptosis in CEM occurred from all phases of the cell cycle and was abrogated partially by Fas antagonist antibodies. These data suggest that Fas-mediated cell death due to the liberation of sFasL may be responsible for the hypersensitivity to ara-G manifested by immature T-cells such as CEM. The role of Fas in ara-G induced death of acute T-lymphoblastic leukemia cells during therapy needs to be tested. ^
Resumo:
Inhibition of DNA repair by the nucleoside of fludarabine (F-ara-A) induces toxicity in quiescent human cells. The sensing and signaling mechanisms following DNA repair inhibition by F-ara-A are unknown. The central hypothesis of this project was that the mechanistic interaction of a DNA repair initiating agent and a nucleoside analog initiates an apoptotic signal in quiescent cells. The purpose of this research was to identify the sensing and signaling mechanism(s) that respond to DNA repair inhibition by F-ara-A. Lymphocytes were treated with F-ara-A, to accumulate the active triphosphate metabolite and subsequently DNA repair was activated by UV irradiation. Pre-incubation of lymphocytes with 3 μM F-ara-A inhibited DNA repair initiated by 2 J/m2 UV and induced greater than additive apoptosis after 24 h. Blocking the incorporation of F-ara-A nucleotide into repairing DNA using 30 μM aphidicolin considerably lowered the apoptotic response. ^ Wild-type quiescent cells showed a significant loss in viability than did cells lacking functional sensor kinase DNA-PKcs or p53 as measured by colony formation assays. The functional status of ATM did not appear to affect the apoptotic outcome. Immunoprecipitation studies showed an interaction between the catalytic sub-unit of DNA-PK and p53 following DNA repair inhibition. Confocal fluorescence microscopy studies have indicated the localization pattern of p53, DNA-PK and γ-H2AX in the nucleus following DNA damage. Foci formation by γ-H2AX was seen as an early event that is followed by interaction with DNA-PKcs. p53 serine-15 phosphorylation and accumulation were detected 2 h after treatment. Fas/Fas ligand expression increased significantly after repair inhibition and was dependent on the functional status of p53. Blocking the interaction between Fas and Fas ligand by neutralizing antibodies significantly rescued the apoptotic fraction of cells. ^ Collectively, these results suggest that incorporation of the nucleoside analog into repair patches is critical for cytotoxicity and that the DNA damage, while being sensed by DNA-PK, may induce apoptosis by a p53-mediated signaling mechanism. Based on the results, a model is proposed for the sensing of F-ara-A-induced DNA damage that includes γ-H2AX, DNA-PKcs, and p53. Targeting the cellular DNA repair mechanism can be a potential means of producing cytotoxicity in a quiescent population of neoplastic cells. These results also provide mechanistic support for the success of nucleoside analogs with cyclophosphamide or other agents that initiate excision repair processes, in the clinic. ^
Resumo:
Deficiency of the enzyme adenosine deaminase (ADA) results in severe lymphopenia in humans. Mice with an inactivating mutation in the ADA gene also exhibit profound lymphopenia, as well as pulmonary insufficiency and ribcage abnormalities. In fact, the mouse model has a phenotype that is remarkably similar to that of the human disease, making the mice valuable tools for unraveling the mechanism of lymphocyte destruction in absence of this housekeeping gene. T cell deficiency in ADA deficiency has been extensively studied by others, revealing a block in early thymocyte development. In contrast, our studies revealed that early B cell development in the bone marrow is normal. ADA-deficient mice, however, exhibit profound defects in germinal center formation, preventing antigen-dependent B cell maturation in the spleen. ADA-deficient spleen B cells display significant defects in proliferation and activation signaling, and produce more IgM than their normal counterparts, suggesting that extrafollicular plasmablasts are overrepresented. B cells from ADA-deficient mouse spleens undergo apoptosis more readily than those from normal mouse spleens. Levels of ADA's substrates, adenosine and 2′-deoxyadenosine, are elevated in both bone marrow and spleen in ADA-deficient mice. S ′-adenosyihomoeysteine hydrolase (SAH hydrolase) activity is significantly inhibited in both locales, as well. dATP levels, though, are only elevated in spleen, where B cell development is impaired, and not in bone marrow, where B cell ontogeny is normal. This finding points to dATP as the causative agent of lymphocyte death in ADA deficiency. ADA deficiency results in inhibition of the enzyme ribonucleotide reductase, thereby depleting nucleoside pools needed for DNA repair. Another mouse model that lacks a functional gene encoding a protein involved in DNA repair and/or cell cycle checkpoint regulation, p53-binding protein 1, exhibits blocks in T and B cell development that are similar to those seen in ADA-deficient mice. Unraveling the mechanisms of lymphocyte destruction in ADA deficiency may further understanding of lymphocyte biology, facilitate better chemotherapeutic treatment for lymphoproliferative diseases, and improve gene and enzyme therapy regimens attempted for ADA deficiency. ^
Resumo:
Angiogenesis is a feature of chronic lung diseases such as asthma and pulmonary fibrosis; however, the pathways controlling pathological angiogenesis during lung disease are not completely understood. Adenosine is a signaling nucleoside that accumulates as a result of tissue hypoxia and damage. Adenosine has been implicated in the exacerbation of chronic lung disease and in the regulation of angiogenesis; however, the relationship between these factors has not been investigated. The work presented in this dissertation utilized adenosine deaminase (ADA)-deficient mice to determine whether chronic elevations of adenosine in vivo result in pulmonary angiogenesis, and to identify factors that could potentially mediate this process. Results demonstrate that there is substantial angiogenesis in the tracheas of ADA-deficient mice in association with adenosine elevations. Replacement enzyme therapy with pegylated ADA resulted in a lowering of adenosine levels and reversal of tracheal angiogenesis, indicating that the increases in vessel number are dependent on adenosine elevations. Levels of the ELR+ angiogenic chemokine CXCL1 were found to be elevated in an adenosine-dependent manner in the lungs of ADA-deficient mice. Neutralization of CXCL1 and its putative receptor, CXCR2, in ADA-deficient lung lysates resulted in the inhibition of angiogenic activity suggesting that CXCL1 signaling through the CXCR2 receptor is responsible for mediating the observed increases in angiogenesis. Taken together, these findings suggest that adenosine plays an important role, via CXCL1, in the induction of pulmonary angiogenesis and may therefore represent an important therapeutic target for the treatment of pathological angiogenesis. ^
Resumo:
The DNA replication polymerases δ and ϵ have an inherent proofreading mechanism in the form of a 3'→5' exonuclease. Upon recognition of errant deoxynucleotide incorporation into DNA, the nascent primer terminus is partitioned to the exonuclease active site where the incorrectly paired nucleotide is excised before resumption of polymerization. The goal of this project was to identify the cellular and molecular consequences of an exonuclease deficiency. The proofreading capability of model system MEFs with EXOII mutations was abolished without altering polymerase function.^ It was hypothesized that 3'→5' exonucleases of polymerases δ and ϵ are critical for prevention of replication stress and important for sensitization to nucleoside analogs. To test this hypothesis, two aims were formulated: Determine the effect of the exonuclease active site mutation on replication related molecular signaling and identify the molecular consequences of an exonuclease deficiency when replication is challenged with nucleoside analogs.^ Via cell cycle studies it was determined that larger populations of exonuclease deficient cells are in the S-phase. There was an increase in levels of replication proteins, cell population growth and DNA synthesis capacity without alteration in cell cycle progression. These findings led to studies of proteins involved in checkpoint activation and DNA damage sensing. Finally, collective modifications at the level of DNA replication likely affect the strand integrity of DNA at the chromosomal level.^ Gemcitabine, a DNA directed nucleoside analog is a substrate of polymerases δ and ϵ and exploits replication to become incorporated into DNA. Though accumulation of gemcitabine triphosphate was similar in all cell types, incorporation into DNA and rates of DNA synthesis were increased in exonuclease defective cells and were not consistent with clonogenic survival. This led to molecular signaling investigations which demonstrated an increase in S-phase cells and activation of a DNA damage response upon gemcitabine treatment.^ Collectively, these data indicate that the loss of exonuclease results in a replication stress response that is likely required to employ other repair mechanisms to remove unexcised mismatches introduced into DNA during replication. When challenged with nucleoside analogs, this ongoing stress response coupled with repair serves as a resistance mechanism to cell death.^
Resumo:
Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^
Resumo:
Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage through late S/ G2 phase of cell cycle in comparison to cells treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX foci. Our findings also demonstrate that thermal sensitization of human hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-dependent homologous recombination repair pathway. Combination of non-invasive radiofrequency field-induced hyperthermia and gemcitabine was superior to either therapy alone (p
Resumo:
The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.
Resumo:
Formation of a triple helix resulting from oligonucleotide binding to the DNA double helix offers new possibilities to control gene expression at the transcriptional level. Purine-motif triplexes can be formed under physiological pH. Nevertheless, this formation was inhibited by certain monovalent cations during the association but not during dissociation. Since triplexes are very stable, it was possible to assemble them in the absence of KCl and have them survive throughout the course of an in vitro transcription reaction. As for the design of a better triplex-forming oligonucleotide, 12 nucleotides in length afforded the highest binding affinity. G/T-rich oligonucleotides can be very polymorphic in solution. The conditions for forming purine-motif triplexes, duplexes or G-quartets were determined. Understanding these parameters will be important for the practical use of G-rich oligonucleotides in the development of DNA aptamers where the structure of the oligonucleotide is paramount in dictating its function. Finally, purine-motif triplexes were demonstrated to significantly inhibit gene transcription in vitro. The optimal effect on this process was dependent on the location of triplexes within the promoter, i.e., whether upstream or proximally downstream of the transcription start site. The mechanism for the inhibition of transcription appeared to be interference with initiation through preventing engagement by RNA polymerase. This finding is revolutionary when compared to the conventional model where triplexes inhibit transcription only by occluding binding by trans-acting proteins. Our findings broaden the utility of triplexes and support a strategy for antigene therapy by triplexes. ^
Resumo:
The formation of triple helical, or triplex DNA has been suggested to occur in several cellular processes such as transcription, replication, and recombination. Our laboratory previously found proteins in HeLa nuclear extracts and in S. cerevisiae whole cell extracts that avidly bound a Purine-motif (Pu) triplex probe in gel shift assays, or EMSA. In order to identify a triplex DNA-binding protein, we used conventional and affinity chromatography to purify the major Pu triplex-binding protein in yeast. Peptide microsequencing and data base searches identified this protein as the product of the STM1 gene. Confirmation that Stm1p is a Pu triplex-binding protein was obtained by EMSA using both recombinant Stm1p and whole cell extracts from stm1Δ yeast. Stm1p had previously been identified as G4p2, a G-quartet DNA- and RNA-binding protein. To study the cellular role and identify the nucleic acid ligand of Stm1p in vivo, we introduced an HA epitope at either the N- or C-terminus of Stm1p and performed immunoprecipitations with the HA.11 mAb. Using peptide microsequencing and Northern analysis, we positively identified a subset of both large and small subunit ribosomal proteins and all four rRNAs as associating with Stm1p. DNase I treatment did not affect the association of Stm1p with ribosomal components, but RNase A treatment abolished the association with all ribosomal proteins and RNA, suggesting this association is RNA-dependent. Sucrose gradient fractionation followed by Western and EMSA analysis confirmed that Stm1p associates with intact 80S monosomes, but not polysomes. The presence of additional, unidentified RNA in the Stm1p-immunoprecipitate, and the absence of tRNAs and elongation factors suggests that Stm1p binds RNA and could be involved in the regulation of translation. Immunofluorescence microscopy data showed Stm1p to be located throughout the cytoplasm, with a specific movement to the bud during the G2 phase of the cell cycle. A dramatically flocculent, large cell phenotype is observed when Stm1p has a C-terminal HA tag in a protease-deficient strain background. When STM1 is deleted in this background, the same phenotype is not observed and the deletion yeast grow very slowly compared to the wild-type. These data suggest that STM1 is not essential, but plays a role in cell growth by interacting with an RNP complex that may contain G*G multiplex RNA. ^
Resumo:
The p53 tumor suppressor protein plays a major role in cellular responses to anticancer agents that target DNA. DNA damage triggers the accumulation of p53, resulting in the transactivation of genes, which induce cell cycle arrest to allow for repair of the damaged DNA, or signal apoptosis. The exact role that p53 plays in sensing DNA damage and the functional consequences remain to be investigated. The main goal of this project was to determine if p53 is directly involved in sensing DNA damage induced by anticancer agents and in mediating down-stream cellular responses. This was tested in two experimental models of DNA damage: (1) DNA strand termination caused by anticancer nucleoside analogs and (2) oxidative DNA damage induced by reactive oxygen species (ROS). Mobility shift assays demonstrated that p53 and DNA-PK/Ku form a complex that binds DNA containing the anticancer nucleoside analog gemcitabine monophosphate in vitro. Binding of the p53-DNA-PK/Ku complex to the analog-containing DNA inhibited DNA strand elongation. Furthermore, treatment of cells with gemcitabine resulted in the induction of apoptosis, which was associated with the accumulation of p53 protein, its phosphorylation, and nuclear localization, suggesting the activation of p53 to trigger apoptosis following gemcitabine induced DNA strand termination. The role of p53 as a DNA damage sensor was further demonstrated in response to oxidative DNA damage. Protein pull-down assays demonstrated that p53 complexes with OGG1 and APE, and binds DNA containing the oxidized DNA base 8-oxoG. Importantly, p53 enhances the activities of APE and OGG1 in excising the 8-oxoG residue as shown by functional assays in vitro. This correlated with the more rapid removal of 8-oxoG from DNA in intact cells with wild-type p53 exposed to exogenous ROS stress. Interestingly, persistent exposure to ROS resulted in the accelerated onset of apoptosis in cells with wild-type p53 when compared to isogenic cells lacking p53. Apoptosis in p53+/+ cells was associated with accumulation and phosphorylation of p53 and its nuclear localization. Taken together, these results indicate that p53 plays a key role in sensing DNA damage induced by anticancer nucleoside analogs and ROS, and in triggering down-stream apoptotic responses. This study provides new mechanistic insights into the functions of p53 in cellular responses to anticancer agents. ^