29 resultados para immune


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the availability of hepatitis B vaccine for over two decades, drug users and other high-risk adult populations have experienced low vaccine coverage. Poor compliance has limited efforts to reduce transmission of hepatitis B infection in this population. Evidence suggests that immunological response in drug users is impaired compared to the general population, both in terms of lower seroprotection rates and antibodies levels.^ The current study investigated the effectiveness of the multi-dose hepatitis B vaccine and compared the effect of the standard and accelerated vaccine schedules in a not-in-treatment, drug-using adult population in the city of Houston, USA.^ A population of drug-users from two communities in Houston, susceptible to hepatitis B, was sampled by outreach workers and referral methodology. Subjects were randomized either to the standard hepatitis vaccine schedule (0, 1-, 6-month) or to an accelerated schedule (0, 1-, 2-month). Antibody levels were detected through laboratory analyses at various time-points. The participants were followed for two years and seroconversion rates were calculated to determine immune response.^ A four percent difference in the overall compliance rate was observed between the standard (73%) and accelerated schedules (77%). Logistic regression analyses showed that drug users living on the streets were twice as likely to not complete all three vaccine doses (p=0.028), and current speedball use was also associated with non-completion (p=0.002). Completion of all three vaccinations in the multivariate analysis was also correlated with older age. Drug users on the accelerated schedule were 26% more likely to achieve completion, although this factor was marginally significant (p=0.085).^ Cumulative adequate protective response was gained by 65% of the HBV susceptible subgroup by 12-months and was identical for both the standard and accelerated schedules. Excess protective response (>=100 mIU/mL) occurred with greater frequency at the later period for the standard schedule (36% at 12-months compared to 14% at six months), while the greater proportion of excess protective response for the accelerated schedule occurred earlier (34% at 6 months compared to 18% at 12-months). Seroconversion at the adequate protective response level of 10 mIU/mL was reached by the accelerated schedule group at a quicker rate (62% vs. 49%), and with a higher mean titer (104.8 vs. 64.3 mIU/mL), when measured at six months. Multivariate analyses indicated a 63% increased risk of non-response for older age and confirmed the existence of an accelerating decline in immune response to vaccination manifesting after 40 years (p=0.001). Injecting more than daily was also highly associated with the risk of non-response (p=0.016).^ The substantial increase in the seroprotection rate at six months may be worth the trade-off against the faster antibody titer decrease and is recommended for enhancing compliance and seroconversion. Utilization of the accelerated schedule with the primary objective of increasing compliance and seroconversion rates during the six months after the first dose may confer early protective immunity and reduce the HBV vulnerability of drug users who continue, or have recently initiated, increased high risk drug use and sexual behaviors.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dermal exposure to jet fuel suppresses the immune response. Immune regulatory cytokines, and biological modifiers, including platelet activating factor, prostaglandin E2, and interleukin-10 have all been implicated in the pathway leading to immunosuppression. It is estimated that approximately 260 different hydrocarbons are found in JP-8 (jet propulsion-8) jet fuel, and the identity of the immunotoxic compound is not known. The recent availability of synthetic jet fuel (S-8), which is devoid of aromatic hydrocarbons, made it feasible to design experiments to test the hypothesis that the aromatic hydrocarbons are responsible for jet fuel induced immune suppression. Applying S-8 to the skin of mice does not up-regulate the expression of epidermal cyclooxygenase-2 nor does it induce immune suppression. Adding back a cocktail of 7 of the most prevalent aromatic hydrocarbons found in jet fuel to S-8 up-regulated cyclooxygenase-2 expression and induced immune suppression. Cyclooxygenase-2 induction can be initiated by reactive oxygen species (ROS). JP-8 treated keratinocytes increased ROS production, S-8 did not. Antioxidant pre-treatment blocked jet fuel induced immune suppression and cyclooxygenase-2 up-regulation. Accumulation of reactive oxygen species induces oxidant stress and affects activity of ROS sensitive transcription factors. JP-8 induced activation of NFκB while S-8 did not. Pre-treatment with antioxidants blocked activation of NFκB and parthenolide, an NFκB inhibitor, blocked jet fuel induced immune suppression and cyclooxygenase-2 expression in skin of treated mice. p65 siRNA transfected keratinocytes demonstrated NFκB is critically involved in jet fuel induced COX-2 expression. These findings clearly implicate the aromatic hydrocarbons found in jet fuel as the agents responsible for inducing immune suppression, in part by the production of reaction oxygen species, NFκB dependent up-regulation of cyclooxygenase-2, and the production of immune regulatory factors and cytokines. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite extensive research, the etiology of adult glioma remains largely unknown. We sought to further explore the role of immune and genetic factors in glioma etiology using data from the Harris County Brain Tumor Study and the first U.S. genome-wide association study of glioma. First, using a case-control study design, we examined the association between adult glioma risk and surrogates of the timing and frequency of common early childhood infections, birth order and sibship size, respectively. We found that each one-unit increase in birth order was associated with a 12% decreased risk of glioma development in adulthood (OR=0.88, 95% CI=0.81-0.96); however, sibship size was not associated with adult glioma risk (OR=0.96, 95% CI=0.91-1.02). Second, we used a multi-strategic approach to explore the relationships between glioma risk, history of asthma/allergies, and 23 functional SNPs in 11 inflammation genes. We found three inflammation gene SNPs to be significantly associated with glioma risk (COX2/PTGS2 rs20417 [OR=1.41]; IL10 rs1800896 [OR=1.57]; and IL13 rs20541 [OR=0.39]). Joint effects analysis of the risk-conferring alleles of these three SNPs revealed a trend of increasing risk with increasing number of adverse alleles among those without asthma/allergies (p<0.0001). Finally, we conducted a case-only study to explore pairwise SNP-SNP interactions in immune-related pathways among a population of 1304 non-Hispanic white glioma cases. After correction for multiple comparisons, we found 279 significant SNP-SNP interactions among polymorphisms of immune-related genes, many of which have not been previously examined. Our results, cumulatively, suggest an important role for immune and genetic factors in glioma etiology and provide several new hypotheses for future studies.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to compare female child-care providers with female university workers and with mothers of children in child-care centers for: (1) frequency of illness and work loss days due to infectious diseases, (2) prevalence of antibodies against measles, rubella, mumps, hepatitis B, hepatitis A, chickenpox and cytomegalovirus (CMV), and (3) status regarding health insurance and job benefits.^ Subjects from twenty child-care centers and twenty randomly selected departments of a university in Houston, Texas were studied in a cross-sectional fashion.^ A cluster sample of 281 female child-care providers from randomly selected child-care centers, a cluster sample of 286 university workers from randomly selected departments and a systematic sample of 198 mothers of children from randomly selected child-care centers.^ Main outcome measures were: (1) self-reported frequency of infectious diseases and number of work-days lost due to infectious diseases; (2) presence of antibodies in blood; and (3) self-reported health insurance and job benefits.^ In comparison to university workers, child-care providers reported a higher prevalence of infectious diseases in the past 30 days; lost three times more work-days due to infectious diseases; and were more likely to have anti-core antibodies against hepatitis B (odds ratio = 3.16 95% CI 1.27-7.85) and rubella (OR 1.88, 95% CI 1.02-3.45). Child-care providers had less health insurance and job-related benefits than mothers of children attending child-care centers.^ Regulations designed to reduce transmission of vaccine and non-vaccine preventable diseases in child-care centers should be strictly enforced. In addition policies to improve health insurance and job benefits of child-care providers are urgently needed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer patients increasingly request alternative therapies such as imagery techniques and support groups. Although research suggests evidence of enhanced psychosocial functioning with supportive group therapy and enhanced immune function with imagery techniques, studies are anecdotal or limited to case studies or descriptive reports. The efficacy of these alternative therapies should be validated by randomized, controlled trials and the mechanisms of action mediating immune function and outcome examined.^ In a 12-month pilot study, we evaluate the feasibility of conducting a controlled study with clinical trial methodology to test the effects of imagery/relaxation and support on quality of life, emotional well-being, and immune function for women after breast cancer. Using a randomized pre-post test design with three intervention waves, we assigned women (n = 47) to either standard care (n = 15), standard care plus 6-weekly support sessions (n = 16) or imagery/relaxation sessions (n = 16).^ The primary aim of this pilot study is to determine the feasibility of conducting a clinical trial of alternative therapies in a clinical care setting. Secondary aims are to determine parameter estimates for the effects of the two treatment groups on quality of life, coping, social support, and immune function and describe methodology issues related to trials of alternative therapies.^ The research provides direction for future studies of alternative therapies by describing the recruitment, clinical trial experience, and related methodology issues. The study extends previous work by differentiating the effects of support group from mental imagery among outpatient groups who are homogeneous regarding cancer type and treatment stage. The study provides data for future longitudinal studies of disease progression by differentiating the effectiveness of interventions designed to enhance quality of life, coping, social support, and immune function and subsequently, alter the clinical course of disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis B virus (HBV) is a significant cause of liver diseases and related complications worldwide. Both injecting and non-injecting drug users are at increased risk of contracting HBV infection. Scientific evidence suggests that drug users have subnormal response to HBV vaccination and the seroprotection rates are lower than that in the general population; potentially due to vaccine factors, host factors, or both. The purpose of this systematic review is to examine the rates of seroprotection following HBV vaccination in drug using populations and to conduct a meta-analysis to identify the factors associated with varying seroprotection rates. Seroprotection is defined as developing an anti-HBs antibody level of ≥ 10 mIU/ml after receiving the HBV vaccine. Original research articles were searched using online databases and reference lists of shortlisted articles. HBV vaccine intervention studies reporting seroprotection rates in drug users and published in English language during or after 1989 were eligible. Out of 235 citations reviewed, 11 studies were included in this review. The reported seroprotection rates ranged from 54.5 – 97.1%. Combination vaccine (HAV and HBV) (Risk ratio 12.91, 95% CI 2.98-55.86, p = 0.003), measurement of anti-HBs with microparticle immunoassay (Risk ratio 3.46, 95% CI 1.11-10.81, p = 0.035) and anti-HBs antibody measurement at 2 months after the last HBV vaccine dose (RR 4.11, 95% CI 1.55-10.89, p = 0.009) were significantly associated with higher seroprotection rates. Although statistically nonsignificant, the variables mean age>30 years, higher prevalence of anti-HBc antibody and anti-HIV antibody in the sample population, and current drug use (not in drug rehabilitation treatment) were strongly associated with decreased seroprotection rates. Proportion of injecting drug users, vaccine dose and accelerated vaccine schedule were not predictors of heterogeneity across studies. Studies examined in this review were significantly heterogeneous (Q = 180.850, p = 0.000) and factors identified should be considered when comparing immune response across studies. The combination vaccine showed promising results; however, its effectiveness compared to standard HBV vaccine needs to be examined systematically. Immune response in DUs can possibly be improved by the use of bivalent vaccines, booster doses, and improving vaccine completion rates through integrated public programs and incentives.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NKG2D (natural killer group 2, member D) and its ligands interaction in tumor microenvironment directs tumor infiltrating immune cells to recognize tumor cells, stimulate cytotoxic effector immune cells, and therefore eradicate tumor cells. IL-12, a cytokine produced by antigen presenting cells, has remarkable antitumor effect by activating innate and adaptive immunity. Doxorubicin, a commonly used chemotherapeutic agent also boosts the host antitumor immune response to cause tumor cell death. Our previous publication suggests that IL-12 plus doxorubicin enhances NKG2D function-dependent inhibition of tumor progression and promotes CD8+T cells infiltrating into tumors. The purpose of this study is to determine the underlying mechanism. Our study reveals a novel function of doxorubicin, which is to augment IL-12–induced NKG2D expression in CD8+T cells but not in NK or CD4+T cells. This observation was further validated by NK and CD8+T cell-depletion studies, in which only depletion of CD8+T cells abolished the expression of NKG2D in lymphocytes. The induced NKG2D expression in CD8+T cells is tightly associated with tumor-specific localization of CD8+T cells and improved antitumor efficacy. The IL-12 plus doxorubicin treatment-induced antitumor efficacy is also due to NKG2D ligand Rae-1 induction in tumors. Rae-1 induction in tumors is a long term effect in multiple tumor models, but not in normal tissues. A novel CD8+T cell direct contact dependent mechanism accounts for Rae-1 induction in vivo and in vitro, and CD80 is the receptor through which CD8+T cells interplay with tumor cells to upregulate Rae-1 on tumor cells. In summary, increased NKG2D expression in CD8+T cells in response to IL-12 plus doxorubicin was closely associated with tumor-specific localization of CD8+T cells and greater antitumor efficacy of the combined regimen than either agent alone. NKG2D ligand Rae-1 induction is triggered by the interaction of CD80 on tumor cells with tumor infiltrating CD+8 T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of immune inhibitory receptor Programmed Death 1 (PD-1) on T cells to its ligand PD-L1 has been implicated as a major contributor to tumor induced immune suppression. Clinical trials of PD-L1 blockade have proven effective in unleashing therapeutic anti-tumor immune responses in a subset of patients with advanced melanoma, yet current response rates are low for reasons that remain unclear. Hypothesizing that the PD-1/PD-L1 pathway regulates T cell surveillance within the tumor microenvironment, we employed intravital microscopy to investigate the in vivo impact of PD-L1 blocking antibody upon tumor-associated immune cell migration. However, current analytical methods of intravital dynamic microscopy data lack the ability to identify cellular targets of T cell interactions in vivo, a crucial means for discovering which interactions are modulated by therapeutic intervention. By developing novel imaging techniques that allowed us to better analyze tumor progression and T cell dynamics in the microenvironment; we were able to explore the impact of PD-L1 blockade upon the migratory properties of tumor-associated immune cells, including T cells and antigen presenting cells, in lung tumor progression. Our results demonstrate that early changes in tumor morphology may be indicative of responsiveness to anti-PD-L1 therapy. We show that immune cells in the tumor microenvironment as well as tumors themselves express PD-L1, but immune phenotype alone is not a predictive marker of effective anti-tumor responses. Through a novel method in which we quantify T cell interactions, we show that T cells are largely engaged in interactions with dendritic cells in the tumor microenvironment. Additionally, we show that during PD-L1 blockade, non-activated T cells are recruited in greater numbers into the tumor microenvironment and engage more preferentially with dendritic cells. We further show that during PD-L1 blockade, activated T cells engage in more confined, immune synapse-like interactions with dendritic cells, as opposed to more dynamic, kinapse-like interactions with dendritic cells when PD-L1 is free to bind its receptor. By advancing the contextual analysis of anti-tumor immune surveillance in vivo, this study implicates the interaction between T cells and tumor-associated dendritic cells as a possible modulator in targeting PD-L1 for anti-tumor immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is the most insidious form of locally advanced disease. Although rare and less than 2% of all breast cancer, IBC is responsible for up to 10% of all breast cancer deaths. Despite the name, very little is known about the role of inflammation or immune mediators in IBC. Therefore, we analyzed blood samples from IBC patients and non-IBC patients, as well as healthy donor controls to establish an IBC-specific profile of peripheral blood leukocyte phenotype and function of T cells and dendritic cells and serum inflammatory cytokines. Emerging evidence suggests that host factors in the microenviromement may interact with underlying IBC genetics to promote the aggressive nature of the tumor. An integral part of the metastatic process involves epithelial to mesenchymal transition (EMT) where primary breast cancer cells gain motility and stem cell-like features that allow distant seeding. Interestingly, the IBC consortium microarray data found no clear evidence for EMT in IBC tumor tissues. It is becoming increasingly evident that inflammatory factors can induce EMT. However, it is unknown if EMT-inducing soluble factors secreted by activated immune cells in the IBC microenvironment canπ account for the absence of EMT in studies of the tumor cells themselves. We hypothesized that soluble factors from immune cells are capable of inducing EMT in IBC. We tested the ability of immune conditioned media to induce EMT in IBC cells. We found that soluble factors from activated immune cells are able to induce the expression of EMT-related factors in IBC cells along with increased migration and invasion. Specifically, the pro-inflammatory cytokines TNF-α, IL-6 and TGF-β were able to induce EMT and blocking these factors in conditioned media abated the induction of EMT. Surprisingly, unique to IBC cells, this process was related to increased levels of E-cadherin expression and adhesion, reminiscent of the characteristic tightly packed tumor emboli seen in IBC samples. This data offers insight into the unique pathology of IBC by suggesting that tumor immune interactions in the tumor microenvironment contribute to the aggressive nature of IBC implying that immune induced inflammation can be a novel therapeutic target. Specifically, we showed that soluble factors secreted by activated immune cells are capable of inducing EMT in IBC cells and may mediate the persistent E-cadherin expression observed in IBC. This data suggests that immune mediated inflammation may contribute to the highly aggressive nature of IBC and represents a potential therapeutic target that warrants further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of these studies was to determine the role of suppressor factors (TsF) in the regulation of immune responses by ultraviolet radiation-induced suppressor T lymphocytes (Ts). The Ts were induced following epicutaneous sensitization with contact allergens to an unirradiated site on mice irradiated five days earlier with 40 kJ/m$\sp2$ UVB (280-320 nm) radiation. The spleens of such mice contain afferent, hapten-specific, Thy-1$\sp+$, Lyt-1$\sp+$,2$\sp-$ Ts that suppress in vivo contact hypersensitivity (CHS) and antibody responses and the in vitro generation of cytotoxic T lymphocytes (CTL). Four approaches were used to determine the role of TsF. First, lysates produced from sonically-disrupted Ts were injected i.v. into normal animals; they inhibited CHS in vivo in a nonspecific manner. The lysates suppressed the induction and elicitation of CHS, and they inhibited the in vitro generation of CTL. Lysates prepared from splenocytes obtained from unirradiated mice or UV-irradiated, unsensitized mice failed to inhibit either response. Second, supernatants from cultures containing Ts, normal syngeneic responder lymphocytes, and hapten-modified stimulator cells were injected i.v. into normal recipients. They inhibited the induction of CHS and did so in a hapten-specific manner. Cellular and kinetic requirements were observed for the generation of suppressive activity. Splenocytes from mice treated with Ts supernatants suppressed CHS when transferred into normal animals. The supernatants also suppressed the in vitro generation of specific CTL. Third, the TsF-specific B16G monoclonal antibody was tested for its ability to modulate the effects of UV radiation in vivo. The i.v. injection of B16G into UV-irradiated mice reduced the suppression of CHS. Splenocytes of B16G-treated mice transferred into normal recipients, and they suppressed CHS, indicating that the Ts were not depleted. Fourth, B16G was used to isolate a putative TsF by antibody immunoadsorbance. When the B16G-bound fraction was eluted and injected i.v. into normal animals, it suppressed CHS and represented a 900-fold enrichment of activity over the starting material, based on specific activity. By SDS-PAGE, the B16G-bound material contained nondisulfide-linked 45- and 50-kDa components. These results suggest that TsF may play an immunoregulatory role in CHS. The isolation of a UV radiation-induced TsF lends credence to the involvement of such molecules. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin cancer is the most prevalent form of neoplasia, with over one million newcases diagnosed this year. UV radiation is a ubiquitous environmental agent that induces skin cancer. In addition to its carcinogenic effect, UV radiation also suppresses cell-mediated immune responses. This immune suppression is not only observed at the site of irradiation, but UV radiation also induces systemic immune suppression. Since UV radiation has a limited ability to penetrate the skin, the question of the mechanism of this systemic immune suppression arises. A number of studies have suggested that UV radiation induce systemic effects through the production of immunoregulatory cytokines, such as IL-4 and IL-10. These cytokines affect the immune response by altering systemic antigen presentation, specifically by suppressing the activation of Th1 cells while allowing the activation of Th2 cells. Because IL-12 is an important regulator of Th1 cell activation, we tested the hypothesis that administration of IL-12 could overcome UV-induced immune suppression. ^ The studies presented here are divided into dime specific aims. In the first specific aim, the ability of IL-12 to overcome UV-induced immune suppression was examined. IL-12 could overcome UV-induced immune suppression as well as prevent the generation of and neutralize the activity of preformed suppressor cells induced by UV radiation. In the second specific aim, the mechanism by which IL-12 overcomes UV-induced immune suppression was examined. IL-12 overcame UV-induced immune suppression by blocking the production of immunoregulatory cytokines such as IL-4, IL-10 and TNF-α. In the third specific aim, the effect of UV radiation on antigen presentation was investigated. UV radiation was found to decrease the production of biologically active IL-12. In addition, UV also increased the production of IL-12p40 homodimer, an antagonist of IL-12p70 heterodimer. This result suggests that IL-12 may have a dual role in the immune suppression induced by, UV radiation. On one hand the biologically active IL-12p70 heterodimer blocks UV-induced immune suppression. In contrast, IL-12p40 homodimer may mediate the suppressive effect of UV radiation. This paradox indicates that IL-12 may have a greater regulatory role in the immune response than was previously suspected. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet radiation plays a critical role in the induction of non-melanoma skin cancer. UV radiation is also immune suppressive. Moreover, UV-induced systemic immune suppression is a major risk factor for skin cancer induction. Previous work had shown that UV exposure in vivo activates a cytokine cascade involving PGE2, IL-4, and IL-10 that induces immune suppression. However, the earliest molecular events that occur immediately after UV-exposure, especially those upstream of PGE2, were not well defined. To determine the initial events and mediators that lead to immune suppression after a pathological dose of UV, mouse keratinocytes were analyzed after sunlamp irradiation. It is known that UV-irradiated keratinocytes secrete the phospholipid mediator of inflammation, platelet-activating factor (PAF). Since PAF stimulates the production of immunomodulatory compounds, including PGE2, the hypothesis that UV-induced PAF activates cytokine production and initiates UV-induced immune suppression was tested. Both UV and PAF activated the transcription of cyclooxygenase (COX)-2 and IL-10 reporter gene constructs. A PAF receptor antagonist blocked UV-induced IL, 10 and COX-2 transcription. PAF mimicked the effects of UV in vivo and suppressed delayed-type hypersensitivity (DTH), and immune suppression was blocked when UV-irradiated mice were injected with a PAF receptor antagonist. This work shows that UV generates PAF-like oxidized lipids, that signal through the PAF receptor, activate cytokine transcription, and induce systemic immune suppression. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin C (ascorbic acid--AA) can have a substantial impact on human health by reducing the incidence and/or severity of coryza. Studies also suggest it has immunomodulatory functions in humans. Immune function is controlled by cytokines, such as type-1 cytokines (IFNγ) that promote antiviral immunity and type-2 cytokines (IL-4, IL-10) that promote humoral immunity. Knowing the mechanisms responsible for both antiviral immunity and type-1/type-2 cytokine balance, we sought to identify AA-induced alterations of human peripheral blood mononuclear cells (PBMC) in vivo and in vitro . We hypothesized that AA modulates the immune system, altering both number and function of PBMC. We first described the effect of 14 days of oral (1 gram) AA in healthy subjects. AA increased circulating natural killer (NK) cells, CD25+ and HLA-DR+ T cells, and PMA/ionomycin-stimulated intracellular IFNγ. We subsequently developed models for in vitro use. We determined that AA was toxic in vitro to T cells when used at doses found intracellularly but doses found in plasma from individuals taking 1gm/day AA were nontoxic. The model that most fully reproduced our in vivo intracellular cytokine findings used dehydroascorbic acid and buffers to deliver AA intracellularly. This model generated the largest increase in IFNγ at physiologic plasma concentrations. Previous studies demonstrate that chronic psychological stress is associated with a type-2 cytokine response. We hypothesized that vitamin C could prevent the type-2 cytokine shift associated with stress. In a study of medical students taking 1 g AA or placebo, a significant increase in IFNγ was seen intracellularly in CD4+ and CD8+ cells and in tetanus-stimulated cultures in the AA group only. We also observed increases in IFNγ/IL-4 and IFNγ/IL-10 ratios with AA supplementation, indicating a type-1 shift. Furthermore, we noted increased numbers of NK cells and activated T cells in the peripheral blood in the AA treated group only. Lastly, we investigated the role of the CD40L/CD40 and CD28/B7 costimulatory pathway in these cytokine alterations. AA did not have any effect on either pathway studied. Thus costimulatory pathways are not contributing to AA induced modulation of the type-1/type-2 immune balance. ^