41 resultados para gel-electrophoresis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complete physical map of Escherichia coli K-12 strain MG1655 was constructed by digesting chromosomal DNA with the infrequently cutting restriction enzymes NotI, SfiI and XbaI and separating the fragments by pulsed field gel electrophoresis. The map was used to compare six K-12 strains of E. coli. Although several differences were noted and localized, the map of MG1655 was representative of all the K-12 strains tested. The maps were also used to analyze chromosomal rearrangements in the E. coli strain MG1655. The spontaneous and UV induced frequencies of tandem duplication formation were measured at several loci distributed around the chromosome. The spontaneous duplication frequency varied from 10$\sp{-5}$ to 10$\sp{-3}$ and increased at least ten-fold following mild UV irradiation treatment. Duplications of several regions of the chromosome, including the serA region and the metE region, were mapped using pulsed field gel electrophoresis. Duplications of serA were found to be large, ranging in size from 600 kb to 2100 kb. Several of the duplications isolated at serA were caused by ectopic recombination between IS5 elements and between IS186 elements. Duplications of the metE region, however, were almost exclusively the result of ectopic recombination between ribosomal RNA cistrons. Duplication frequencies were determined at both serA and metE in wild type and mismatch repair mutant strains (mutL, mutS, uvrD and recF). Even though all of the mismatch repair mutations increased duplication frequency of metE, the largest increases were observed in the mutL and mutS strains. Duplication frequency of serA was increased less dramatically by mutations in mismatch repair. Several duplications of metE isolated in a wild type and a mismatch repair mutant were mapped. The results showed that the same repeated sequences were used for duplication formation in the mismatch repair mutant as were used in the wild type strain. Several isolates showed evidence of multiple rearrangements indicating that mismatch repair may play a role in stabilizing the genome by controlling chromosomal rearrangement. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heparanase, an endo-$\beta$-D-glucuronidase, has been associated with melanoma metastasis. Polyclonal antibodies directed against the murine N-terminal heparanase peptide detected a M$\sb{\rm r}\sim 97,000$ protein upon SDS-polyacrylamide gel electrophoresis of mouse melanoma and human melanoma cell lysates. In an indirect immunocytochemical study, metastatic human A375-SM and mouse B16-BL6 melanoma cells were stained with the anti-heparanase antibodies. Heparanase antigen was localized in the cytoplasm of permeabilized melanoma cells as well as at the cell surface of unpermeabilized cells. Immunohistochemical staining of frozen sections from syngeneic mouse organs containing micrometastases of B16-BL6 melanoma demonstrated heparanase localized in metastatic melanoma cells, but not in adjacent normal tissues. Similar studies using frozen sections of malignant melanomas resected from patients indicated that heparanase is localized in invading melanoma cells, but not in adjacent connective tissues.^ Monoclonal antibodies directed against murine heparanase were developed and characterized. Monoclonal antibody 10E5, an IgM, precipitated and inhibitated the enzymatic activity of heparanase. A 2.6 kb cDNA was isolated from a human melanoma $\lambda$gt11 cDNA library using the monoclonal antibody 10E5. Heparan sulfate cleavage activity was detected in the lysogen lysates from E. Coli Y1089 infected with the $\lambda$gt11 cDNA and this activity was inhibited in the presence of 10-fold excess of heparin, a potent inhibitor of heparanase. The nucleotide sequence of the cDNA was determined and insignificant homology was found with the gene sequences currently known. The cDNA hybridized to a 3.2-3.4 kb mRNA in human A375 melanoma, WI-38 fibroblast, and THP-1 leukemia cells using Northern blots.^ Heparanase expression was examined using Western and Northern blots. In comparison to human A375-P melanoma cells, the quantity of 97,000 protein recognized by the polyclonal anti-heparanase antibodies doubled in the metastatic variant A375-SM cells and the quantity of 3.2-3.4 kb mRNA doubled in A375MetMix, a metastatic variant similar to A375-SM cells. In B16 murine melanoma cell, the intensity of the 97,000 protein increased more than 2 times comparing with B16-F1 cells. The extent in the increase of the protein and the mRNA levels is comparable to the change of heparanase activity observed in those cells.^ In summary, the studies suggest that (a) the N-terminus of the heparanase molecule in mouse and human is antigenically related; (b) heparanase antigens are localized at the cell surface and in the cytoplasm of metastatic human and mouse melanoma cells; (c) heparanase antigens are localized in invasive and metastatic murine and human melanomas in vivo, but not in adjacent normal tissues; (d) heparanase molecule appeared to be differentially expressed at the transcriptional as well as at the translational level; and (e) the size of human heparanase mRNA is 3.2-3.4 kilobase. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complete NotI, SfiI, XbaI and BlnI cleavage maps of Escherichia coli K-12 strain MG1655 were constructed. Techniques used included: CHEF pulsed field gel electrophoresis; transposon mutagenesis; fragment hybridization to the ordered $\lambda$ library of Kohara et al.; fragment and cosmid hybridization to Southern blots; correlation of fragments and cleavage sites with EcoMap, a sequence-modified version of the genomic restriction map of Kohara et al.; and correlation of cleavage sites with DNA sequence databases. In all, 105 restriction sites were mapped and correlated with the EcoMap coordinate system.^ NotI, SfiI, XbaI and BlnI restriction patterns of five commonly used E. coli K-12 strains were compared to those of MG1655. The variability between strains, some of which are separated by numerous steps of mutagenic treatment, is readily detectable by pulsed-field gel electrophoresis. A model is presented to account for the difference between the strains on the basis of simple insertions, deletions, and in one case an inversion. Insertions and deletions ranged in size from 1 kb to 86 kb. Several of the larger features have previously been characterized and some of the smaller rearrangements can potentially account for previously reported genetic features of these strains.^ Some aspects of the frequency and distribution of NotI, SfiI, XbaI and BlnI cleavage sites were analyzed using a method based on Markov chain theory. Overlaps of Dam and Dcm methylase sites with XbaI and SfiI cleavage sites were examined. The one XbaI-Dam overlap in the database is in accord with the expected frequency of this overlap. The occurrence of certain types of SfiI-Dcm overlaps are overrepresented. Of the four subtypes of SfiI-Dcm overlap, only one has a partial inhibitory effect on the activity of SfiI. Recognition sites for all four enzymes are rarer than expected based on oligonucleotide frequency data, with this effect being much stronger for XbaI and BlnI than for NotI and SfiI. The latter two enzyme sites are rare mainly due to apparent negative selection against GGCC (both) and CGGCCG (NotI). The former two enzyme sites are rare mainly due to effects of the VSP repair system on certain di-tri- and tetranucleotides, most notably CTAG. Models are proposed to explain several of the anomalies of oligonucleotide distribution in E. coli, and the biological significance of the systems that produce these anomalies is discussed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initial step in coronavirus-mouse hepatitis virus (MHV) replication is the synthesis of negative strand RNA from a positive strand genomic RNA template. Our approach to studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the protein(s) which recognizes these signals at the 3$\sp\prime$ end of genomic RNA of MHV. To determine whether host cellular and/or virus-specific proteins interact with the 3$\sp\prime$ end of the coronavirus genome, an RNase T$\sb1$ protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from either mock- or MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. A conserved 11 nucleotide sequence UGAAUGAAGUU at nucleotide positions 36 to 26 from the 3$\sp\prime$ end of genomic RNA was identified to be responsible for the specific binding of host proteins, by using a series of RNA probes with deletions and mutations in this region. The RNA probe containing the 11 nucleotide sequence bound approximately four host cellular proteins with a highly labeled 120 kDa and three minor species with sizes of 103, 81 and 55 kDa, assayed by UV-induced covalent cross-linking. Mutation of the 11 nucleotide motif strongly inhibited cellular protein binding, and decreased the amount of the 103 and 81 kDa proteins in the complex to undetectable levels and strongly reduced the binding of the 120 kDa protein. Less extensive mutations within this 11 nucleotide motif resulted in variable decreases in RNA-protein complex formation depending on each probe tested. The RNA-protein complexes observed with cytoplasmic extracts from MHV-JHM-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were indistinguishable to those observed with extracts from uninfected cells.^ To investigate the possible role of this 3$\sp\prime$ protein binding element in viral RNA replication in vivo, defective interfering RNA molecules with complete or partial mutations of the 11 nucleotide conserved sequence were transcribed in vitro, transfected to host 17Cl-1 cells in the presence of helper virus MHV-JHM and analyzed by agarose gel electrophoresis, competitive RT-PCR and direct sequencing of the RT-PCR products. Both negative strand synthesis and positive strand replication of DI RNA were affected by mutation that disrupts RNA-protein complex formation, even though the 11 mutated nucleotides were converted to wild type sequence, presumably by recombination with helper virus. Kinetic analysis indicated that recombination between DI RNA and helper virus occurred 5.5 to 7.5 hours post infection when replication of positive strand DI RNA was barely observed. Replication of positive strand DI RNAs carrying partial mutations within the 11 nucleotide motif was dependent upon recombination events after transfection. Replication was strongly inhibited when reversion to wild type sequence did not occur, and after recombination, reached similar levels as wild type DI RNA. A DI RNA with mutation upstream of the protein binding motif replicated as efficiently as wild type without undergoing recombination. Thus the conserved 11 nucleotide host protein binding motif appears to play an important role in viral RNA replication. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A means of analyzing protein quaternary structure using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI MS) and chemical crosslinking was evaluated. Proteins of known oligomeric structure, as well as monomeric proteins, were analyzed to evaluate the method. The quaternary structure of proteins of unknown or uncertain structure was investigated using this technique. The stoichiometry of recombinant E. coli carbamoyl phosphate synthetase and recombinant human farnesyl protein transferase were determined to be heterodimers using glutaraldehyde crosslinking, agreeing with the stoichiometry found for the wild type proteins. The stoichiometry of the gamma subunit of E. coli DNA polymerase III holoenzyme was determined in solution without the presence of other subunits to be a homotetramer using glutaraldehyde crosslinking and MALDI MS analysis. Chi and psi subunits of E. coli DNA polymerase III subunits appeared to form a heterodimer when crosslinked with heterobifunctional photoreactive crosslinkers.^ Comparison of relative % peak areas obtained from MALDI MS analysis of crosslinked proteins and densitometric scanning of silver stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels showed excellent qualitative agreement for the two techniques, but the quantitative analyses differed, sometimes significantly. This difference in quantitation could be due to SDS-PAGE conditions (differential staining, loss of sample) or to MALDI MS conditions (differences in ionization and/or detection). Investigation of pre-purified crosslinked monomers and dimers recombined in a specific ratio revealed the presence of mass discrimination in the MALDI MS process. The calculation of mass discrimination for two different MALDI time-of-flight instruments showed the loss of a factor of approximately 2.6 in relative peak area as the m/z value doubles over the m/z range from 30,000 to 145,000 daltons.^ Indirect symmetry was determined for tetramers using glutaraldehyde crosslinking with MALDI MS analysis. Mathematical modelling and simple graphing allowed the determination of the symmetry for several tetramers known to possess isologous D2 symmetry. These methods also distinguished tetramers that did not fit D2 symmetry such as apo-avidin. The gamma tetramer of E. coli DNA polymerase III appears to have isologous D2 symmetry. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TBI produces a consistent and extensive loss of neurofilament 68 (NF68) and neurofilament 200 (NF200), key intermediate cytoskeletal proteins found in neurons including axons and dendrites, in cortical samples from injured brain. The presence of low molecular weight NF68 breakdown products (BDPs) strongly suggest that calpain proteolysis at least in part contributes to neurofilament (NF) protein loss following injury. Furthermore, one and two-dimensional gel electrophoresis analyses of NF BDPs obtained from in situ and in vitro tissue also implicated the involvement of calpain 2 mediated proteolysis of neurofilaments following TBI. Immunohistochemical examination of derangements in cytoskeletal proteins following traumatic brain injury in rats indicated that preferential dendritic rather than axonal damage occurs within three hours post-TBI. Although proteolysis of cytoskeletal proteins occurred concurrently with early morphological alterations, evidence of proteolysis preceded the full expression of evolutionary histopathological changes. Furthermore, cytoskeletal immunofluorescence alterations were not restricted to the site of impact. Confocal microscopic investigations of NF68 and NF200 immunofluorescence within injured cortical neurons revealed alterations in neurofilament assembly in the absence of NF derangements detectable at the light microscopic level ($<$15 minutes post-TBI). Collectively immunohistochemistry studies suggest that derangements to neuronal processes are biochemical and evolutionary in nature, and not due solely to mechanical shearing. Importantly, a systemically administered calpain inhibitor (calpain inhibitor 2) significantly reduced NF200, NF68, and spectrin protein loss as well as providing marked preservation of NF proteins in neuronal somata, dendrites, and axons at 24 hours post-TBI. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The carcinogenic activity of water-insoluble crystalline nickel sulfide requires phagocytosis and lysosome-mediated intracellular dissolution of the particles to yield Ni('2+). This study investigated the extent and nature of the DNA damage in Chinese hamster ovary cells treated with various nickel compounds using the technique of alkaline elution. Crystalline NiS and water-soluble NiCl(,2) induced single strand breaks that were repaired quickly and DNA-protein crosslinks that persisted up to 24 hr after exposure to nickel. The induction of single strand breaks was concentration dependent at both noncytotoxic and lethal amounts of nickel. The induction of DNA-protein crosslinks was concentration dependent but was absent at lethal amounts of nickel. The cytoplasmic and nuclear uptake of nickel was concentration dependent even at the toxic level of nickel. However, the induction of DNA-protein crosslinks by nickel required active cell cycling and occurred predominantly in mid-late S phase of the cell cycle, suggesting that the lethal amounts of nickel inhibited DNA-protein crosslinking by inhibiting active cell cycling. Since the DNA-protein crosslinking induced by nickel was resistant to DNA repair, the nature of this lesion was investigated using various methods of DNA isolation and chromatin fractionation in combination with SDS-polyacrylamide gel electrophoresis. High molecular weight, non-histone chromosomal proteins and possibly histone 1 were preferentially crosslinked to DNA by nickel. The crosslinked proteins were concentrated in a magnesium-insoluble fraction of sonicated chromatin (5% of the total) that was similar to heterochromatin in solubility and protein composition. Alterations in DNA structure and function, brought about by the effect of nickel on protein-DNA interactions, may be related to the carcinogenicity of nickel compounds. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation presents evidence to support the hypothesis that cytoplasmic malate dehydrogenase (MDH-1) is the enzyme in humans which catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH, and the enzyme which has been described in the literature as aromatic alpha-keto acid reductase (KAR; E.C. 1.1.1.96) is actually a secondary activity of cytoplasmic malate dehydrogenase.^ Purified MDH and purified KAR have the same molecular weight, subunit structure, heat-inactivation profile and tissue distribution. After starch gel electrophoresis, and using p-hydroxyphenylpyruvic acid (HPPA) as substrate, KAR activity co-migrates with MDH-1 in all species studied except some marine animals. Inhibition with malate, the end-product of malate dehydrogenase, substantially reduces or totally eliminates KAR activity. Purified cytoplasmic MDH from human erythrocytes has an alpha-keto acid reductase activity with identical mobility. All electrophoretic variants of MDH-1 seen in the fresh-water bony fish Xiphophorus, the amphibians Rana and humans exhibited identical variation for KAR, and the two traits co-segregated in the small group of offspring from one Rana heterozygote studied. Both enzymes show almost no electrophoretic variation among humans from many ethnic groups, and among several inbred strains of mice both MDH-s and KAR co-migrate with no variation. MDH-1 and KAR in mouse and Chinese hamster fibroblasts show identical mobility differences between species. Antisera raised against purified chicken cytoplasmic MDH totally inhibited both MDH-1 and KAR in chickens and humans. Mitochondrial MDH from tissue homogenates has no detectable KAR activity but purified MDH-2 does.^ The previous claim that the gene for KAR is on human chromosome 12 is disputed because both MDH-1 and LDH bands appear with slightly different mobility approximately midway between the human and hamster controls in somatic cell hybrid studies, and the meaning of this artifact is discussed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous investigations have demonstrated qualitative differences in the plasma membrane glycoproteins of normal and malignant rat liver cells. The present investigations were designed to identify and characterize the spectrum of glycoproteins present on the surface of Novikoff and AS-30D hepatocellular carcinoma cells. Three cell-surface radiolabeling techniques were employed to tag specifically the plasma membrane glycoproteins: lactoperoxidase catalyzed iodination, specific for tyrosine residues; galactose oxidase/NaB{('3)H}(,4), specific for galactosyl residues; and NaIO(,4)/NaB{('3)H}(,4), specific for sialic acids. The glycoproteins were resolved by one- and two-dimensional gel electrophoresis and visualized by fluorography or autoradiography. It was found that these glycoproteins are a complex population of molecules. The complexity of this system is reflected not only in the number of individual components that can be detected (> 25), but in the charge heterogeneity of individual glycoproteins due to variable sialic acid content. Certain glycoproteins behaved anamolously on SDS-polyacrylamide gel electrophoresis; the apparent molecular weight decreasing with increasing acrylamide concentrations suggesting a high % carbohydrate. Cell-surface radiolabeling techniques were employed in combination with lectin affinity chromatography, using lectins of different saccharide specificity, to analyze the saccharide determinants present on the spectrum of cell-surface molecules. It was also found that particular glycoproteins differed in their lability to protease or neuraminidase digestion and in their extractability by non-ionic detergents. From these studies, detailed models of the plasma membrane of Novikoff and AS-30D cells were constructed which incorporates information concerning the structure and accessibility of heterosaccharide and peptide moieties, the relationship of the glycolipids, and the interaction of particular glycoproteins with the lipid bilayer. These investigations provide basic information concerning the molecular composition and properties of the plasma membrane of glycoproteins of malignant rat liver cells and lay the groundwork for future comparison to normal hepatocytes. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inbred strains of three species of fishes of the genus Xiphophorus (platyfish and swordtails) were crossed to produce intra- and interspecific F(,1) hybrids, which were then backcrossed to one or both parental stocks. Backcross hybrids were used for the analysis of segregation and linkage of 33 protein-coding loci (whose products were visualized by starch gel electrophoresis) and a sex-linked pigment pattern gene. Segregation was Mendelian for all loci with the exception of one instance of segregation distortion. Six linkage groups of enzyme-coding loci were established: LG I, ADA --6%-- G(,6)PD --24%-- 6PGD; LG II, Est-2 --27%-- Est-3 --0%-- Est-5 --23%-- LDH-1 --16%-- MPI; LG III, AcPh --38%-- G(,3)PD-1 (GUK-2 --14%-- G(,3)PD-1 is also in LG III, but the position of GUK-2 with respect to AcPh has not yet been determined); LG IV, GPI-1 --41%-- IDH-1; LG V, Est-1 --38%-- MDH-2; and LG VI, P1P --7%-- UMPK-1 (P1P is a plasma protein, very probably transferrin).^ Sex-specific recombination appeared absent in LG II and LG IV locus pairs; significantly higher male recombination was demonstrated in LG I but significantly higher female recombination was detected in LG V. Only one significant population-specific difference in recombination was detected, in the G(,6)PD - 6PGD region of LG I; the notable absence of such effects implies close correspondence of the genomes of the species used in the study. Two cases of possible evolutionary conservation of linkage groups in fishes and mammals were described, involving the G(,6)PD - 6PGD linkage in LG I and the cluster of esterase loci in LG II. One clear case of divergence was observed, that of the linkage of ADA in LG I. It was estimated that a minimum of (TURN)50% of the Xiphophorus genome was marked by the loci studied. Therefore, the prior probability that a new locus will assort independently from the markers already established is estimated to be less than 0.5. A maximum of 21 of the 24 pairs of chromosomes could be marked with at least one locus.^ Only the two LG V loci showed a significant association with a postulated gene controlling the severity of a genetically controlled melanoma caused by abnormal proliferation of macromelanophore pigment pattern cells. The independence of melanotic severity from all other informative markers implies that one or at most a few major genes are involved in control of melanotic severity in this system. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Homogenous detergent-solubilized NADPH-Cytochrome P-450 reductase was incorporated into microsomes and liposomes. This binding occurred spontaneously at temperatures between 4(DEGREES) and 37(DEGREES) and appeared to involve hydrophobic forces as the binding was not disrupted by 0.5 M sodium chloride. This exogenously-added reductase was active catalytically towards native cytochrome P-450, suggesting an association with the microsomal membrane similar to endogenous reductase. Homogeneous detergent-solubilized reductase was disaggregated by Renex-690 micelles, confirming the presence of a hydrophobic combining region on the enzyme. In contrast to these results, steapsin protease-solubilized reductase was incapable of microsomal attachment and did not interact with Renex-690 micelles. Detergent-solubilized reductase (76,500 daltons) was converted into a form with the electrophoretic mobility of steapsin protease-solubilized reductase (68,000 daltons) and a 12,500 dalton peptide (as determined by polyacrylamide-SDS gel electrophoresis) when the liposomal-incorporated enzyme was incubated with steapsin protease. The 68,000 dalton fragment thus obtained had properties identical with steapsin protease-solubilized reductase, i.e. it was catalytically active towards cytochrome c but inactive towards cytochrome P-450 and did not bind liposomes. The 12,500 dalton fragment remained associated with the liposomes when the digest was fractionated by gel filtration, suggesting that this is the segment of the enzyme which is embedded in the phospholipid bilayer. Thus, detergent-solubilized reductase appears to contain a soluble catalytic domain and a separate and separable membrane-binding domain. This latter domain is required for attaching the enzyme to the membrane and also to facilitate the catalytic interaction between the reductase and its native electron acceptor, cytochrome P-450. The membrane-binding segment of the reductase was isolated by preparative gel electrophoresis in SDS following its generation by proteolytic treatment of liposome-incorporated reductase. The peptide has a molecular weight of 6,400 as determined by gel filtration in 8 M guanidine hydrochloride and has an amino acid composition which is not especially hydrophobic. Following removal of SDS and dialysis out of 6 M urea, the membrane-binding peptide was unable to inhibit the activity of a reconstituted system containing purified reductase and cytochrome P-450. Moreover, when reductase and cytochrome P-450 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptide were used. Thus, the membrane-binding peptide was ineffective as an inhibitor of mixed function oxidase activity, suggesting perhaps that it facilitates catalysis by anchoring the catalytic domain of the reductase proximal to cytochrome P-450 (i.e. in the same mixed micelle) rather than through a specific interaction with cytochrome P-450. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viral proteins synthesized by a Moloney murine sarcoma virus (Mo-MuSV) with a temperature-sensitive mutation in a function required for the maintenance of the transformed state (ts110) were examined. Normal rat kidney cells (NRK) were infected with the ts110 virus and a non-virus-producing cell clone, termed 6m2, was isolated. This cell clone had a malignant phenotype at 33(DEGREES), the permissive temperature, but changed to a normal phenotype at 39(DEGREES).^ Two viral proteins were detected in 6m2 cells. A 58,000 dalton protein (P58) was detected at both 33(DEGREES) and 39(DEGREES) and contained only core protein (gag) coded sequences. An 85,000 dalton protein (P85) was detected only at 33(DEGREES) and contained sequences of viral core proteins p15, pp12, and part of p30 as well as protein sequences attributed by peptide mapping to P23 and P38, two candidate viral mouse src (v-mos) gene products. These results provide good evidence that P85 is a gag-mos polyprotein. As expected for a functional mos-gene product, P85 synthesis preceded parameters characteristic of the transformed state, including changes in cell morphology, in the cytoplasmic microtubule complex (CMTC) and in the rate of hexose uptake.^ Other studies were conducted to ascertain the defect which prohibited the synthesis of P85 at 39(DEGREES), the non-permissive temperature. When 6m2 cells were treated with actinomycin D at 39(DEGREES) and shifted to 33(DEGREES), the cells were unable to synthesize P85, but P58 continued to be made. P85 mRNA, active at 33(DEGREES), continued to be translated for two to three hours after shifting to 39(DEGREES) as judged by pulse-labeling experiments. Virus harvested at 33(DEGREES) from ts110 MuSV producer cells packaged both P85 and P58 coding RNAs while virus harvested at 39(DEGREES) was deficient in the amount of P85 coding RNA. Agarose gel electrophoresis of 6m2 cellular RNA showed that RNA harvested at 33(DEGREES) contained the 4.0 and 3.5 kb RNAs. Similar experiments on cells maintained at 39(DEGREES) have detected only the 4.0 kb RNA, suggesting that the 3.5 kb RNA codes for P85. The defect appeared to be in the long term stability of the P85 coding RNA at 39(DEGREES), since, in shift-up experiments (33(DEGREES) (--->) 39(DEGREES)), P85 was translated for only three hours at 39(DEGREES), while P58 was synthesized for at least eight hours. However, at 33(DEGREES) in the presence of actinomycin D, the ratio of P85 and P58 synthesis at hourly intervals was similar throughout a 12 hour period. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phenomenon of premature chromosome condensation, resulting from fusion between mitotic and interphase cells, includes dissolution of the interphase nuclear framework, thus allowing a direct visualization of interphase chromosomes. Light microscope morphology of prematurely condensed chromosomes (PCC) from synchronized HeLa cells supports the model of an interphase "chromosome condensation cycle". PCC are increasingly attenuated as cells progress through G(,1). A maximum degree of decondensation is observed at active sites of DNA replication during S phase, and a condensed morphology is rapidly resumed following completion of replication of a chromosome segment.^ To permit ultrastructural and biochemical studies of PCC, a procedure was developed to induce premature chromosome condensation at high frequency. This was achieved by polyethylene glycol (PEG)-mediated fusion of a dense monolayer of mitotic and interphase cells induced by centrifugation onto lectin-coated culture dishes. Using this method, PCC induction frequencies of 60-90% are routinely obtained.^ Scanning electron microscope analysis of PCC spreads revealed that the extension of PCC during progression through G(,1) is accompanied by a transition of the basic 30 nm chromatin fiber from tightly packed looping fibers to extended longitudinal fibers. Sites of active DNA replication is S-PCC were indicated to be organized a single longitudinal fibers. Following replication of a chromosome segment, a rapid reorganization from the extended longitudinal fiber to packed looping fibers occurs. The postreplication maturation process appears to include the assembly of a chromosome core consisting of multiple longitudinal fibers.^ The role of histone H1 phosphorylation in PCC formation was investigated by acidurea polyacrylamide gel electrophoresis of total histone extracted from metaphase chromosomes and PCC following high frequency fusion. This investigation failed to demonstrate an extensive phosphorylation of H1 associated with PCC formation. However, significant dephosphorylation of superphosphorylated metaphase chromosome H1 was observed, indicating that interphase H1-phosphatase activity is dominant over metaphase H1 kinase activity. These observations provide evidence against models suggesting a role for H1 superphosphorylation in triggering mitotic condensation of chromosomes. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A CDP-diacylglycerol dependent phosphatidylserine synthase was detected in three species of gram-positive bacilli, viz. Bacillus licheniformis, Bacillus subtilis and Bacillus megaterium; the enzyme in B. licheniformis was studied in detail. The subcellular distribution experiments in cell-free extracts of B. licheniformis using differential centrifugation, sucrose gradient centrifugation and detergent solubilization showed the phosphatidylserine synthase to be tightly associated with the membrane. The enzyme was shown to have an absolute requirement for divalent metal ion for activity with a strong preference for manganese. The enzyme activity was completely dependent upon the addition of CDP-diacylglycerol to the assay system; the role of the liponucleotide was rigorously shown to be that of phosphatidyl donor and not just a detergent-like stimulator. This enzyme was then solubilized from B. licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue-dextran Sepharose. The purified preparation showed a single band with an apparent minimum molecular weight of 53,000 when subjected to SDS polyacrylamide gel electrophoresis. The preparation was free of any phosphatidylglycerophosphate synthase, CDP-diacylglycerol hydrolase and phosphatidylserine hydrolase activities. The utilization of substrates and formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential BiBi reaction as opposed to the ping-pong mechanism exhibited by the well studied phosphatidylserine synthase of Escherichia coli. Proteolytic digestion of the enzyme yielded a smaller active form of the enzyme (41,000 daltons) which appears to be less prone to aggregation.^ This has been the first detailed study in a well-defined bacillus species of the enzyme catalyzing the CDP-diacylglycerol-dependent formation of phosphatidylserine; this reaction is the first committed step in the biosynthetic pathway to the major membrane component, phosphatidylethanolamine. Further study of this enzyme may lead to understanding of new mechanisms of phosphatidyl transfer and novel modes of control of phospholipid biosynthetic enzymes. ^