17 resultados para Recombinant Proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have led to the development of allochimeric class I MHC proteins as agents that effectively induce donor-specific transplantation tolerance in a rat system with or without additional immunosuppression. Within the α1-helical region of RT1.Au, an epitope that conferred immunologic tolerance was discovered. Studies presented herein were designed to test our central hypothesis that allochimeric proteins onfer tolerance in a mouse model. To test this hypothesis, portal vein (PV) injection of wild-type H2Kd and H2Dd proteins were produced in a bacterial expression system and found to specifically prolong the survival of BALB/c (H2d) heart allografts in C57BL/10 (H2b) recipients. Although a single PV injection of 50 μg α1–α 3 H2Kd alone was ineffective, 50 μg α1 –α3 alone slightly prolonged BALB/c heart allograft survivals. In contrast, the combination of 25 μg α1–α 3 H2Kd and 25 μg α1–α 3 H2Dd proteins prolonged BALB/c graft survivals to 20.2 ± 6.4 days (p < 0.004). The effect was donor-specific, since a combination of 25 μg α1–α3 H2Kd and 25 μg α1–α3 H2Dd proteins failed to affect survivals of third-party C3H (H2k k) heart allografts, namely 9.0 ± 0.0 days in treated versus 7.8 ± 0.5 days in untreated hosts. Thus, the combination of two H2K d and H2Dd proteins is more effective in prolonging allograft survival than a single protein produced in a bacterial expression system. A single PV injection (day 0) of 25 μg α1–α 2 H2Kd and 25 μg α1–α 2 H2Dd proteins to C57BL/10 mice prolonged the survival of BALB/c heart allografts to 22.4 ± 4.5 days. Within a WF to ACI rat heart allograft system, a single PV injection of 20 μg 70–77 u-RT1.Aa induced specific tolerance of allografts. This therapy could be combined with CsA to induce transplantation tolerance. However, combination of 70–77u-RT1.Aa with CTLA4Ig, rapamycin, or AG-490 effectively blocked the induction of transplantation tolerance. Tolerance generated by allochimeric protein could be adoptively transferred to naive recipients. Intragraft cytokine mRNA levels showed a bias towards a Th2-type phenotype. Additionally, studies of cytokine signaling and activation of transcription factors revealed a requirement that these pathways remain available for signaling in order for transplantation tolerance to occur. These studies suggest that the generation of regulatory cells are required for the induction of transplantation tolerance through the use of allochimeric proteins. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^