18 resultados para Immune response


Relevância:

70.00% 70.00%

Publicador:

Resumo:

NKG2D (natural killer group 2, member D) and its ligands interaction in tumor microenvironment directs tumor infiltrating immune cells to recognize tumor cells, stimulate cytotoxic effector immune cells, and therefore eradicate tumor cells. IL-12, a cytokine produced by antigen presenting cells, has remarkable antitumor effect by activating innate and adaptive immunity. Doxorubicin, a commonly used chemotherapeutic agent also boosts the host antitumor immune response to cause tumor cell death. Our previous publication suggests that IL-12 plus doxorubicin enhances NKG2D function-dependent inhibition of tumor progression and promotes CD8+T cells infiltrating into tumors. The purpose of this study is to determine the underlying mechanism. Our study reveals a novel function of doxorubicin, which is to augment IL-12–induced NKG2D expression in CD8+T cells but not in NK or CD4+T cells. This observation was further validated by NK and CD8+T cell-depletion studies, in which only depletion of CD8+T cells abolished the expression of NKG2D in lymphocytes. The induced NKG2D expression in CD8+T cells is tightly associated with tumor-specific localization of CD8+T cells and improved antitumor efficacy. The IL-12 plus doxorubicin treatment-induced antitumor efficacy is also due to NKG2D ligand Rae-1 induction in tumors. Rae-1 induction in tumors is a long term effect in multiple tumor models, but not in normal tissues. A novel CD8+T cell direct contact dependent mechanism accounts for Rae-1 induction in vivo and in vitro, and CD80 is the receptor through which CD8+T cells interplay with tumor cells to upregulate Rae-1 on tumor cells. In summary, increased NKG2D expression in CD8+T cells in response to IL-12 plus doxorubicin was closely associated with tumor-specific localization of CD8+T cells and greater antitumor efficacy of the combined regimen than either agent alone. NKG2D ligand Rae-1 induction is triggered by the interaction of CD80 on tumor cells with tumor infiltrating CD+8 T cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skin cancer is the most prevalent form of neoplasia, with over one million newcases diagnosed this year. UV radiation is a ubiquitous environmental agent that induces skin cancer. In addition to its carcinogenic effect, UV radiation also suppresses cell-mediated immune responses. This immune suppression is not only observed at the site of irradiation, but UV radiation also induces systemic immune suppression. Since UV radiation has a limited ability to penetrate the skin, the question of the mechanism of this systemic immune suppression arises. A number of studies have suggested that UV radiation induce systemic effects through the production of immunoregulatory cytokines, such as IL-4 and IL-10. These cytokines affect the immune response by altering systemic antigen presentation, specifically by suppressing the activation of Th1 cells while allowing the activation of Th2 cells. Because IL-12 is an important regulator of Th1 cell activation, we tested the hypothesis that administration of IL-12 could overcome UV-induced immune suppression. ^ The studies presented here are divided into dime specific aims. In the first specific aim, the ability of IL-12 to overcome UV-induced immune suppression was examined. IL-12 could overcome UV-induced immune suppression as well as prevent the generation of and neutralize the activity of preformed suppressor cells induced by UV radiation. In the second specific aim, the mechanism by which IL-12 overcomes UV-induced immune suppression was examined. IL-12 overcame UV-induced immune suppression by blocking the production of immunoregulatory cytokines such as IL-4, IL-10 and TNF-α. In the third specific aim, the effect of UV radiation on antigen presentation was investigated. UV radiation was found to decrease the production of biologically active IL-12. In addition, UV also increased the production of IL-12p40 homodimer, an antagonist of IL-12p70 heterodimer. This result suggests that IL-12 may have a dual role in the immune suppression induced by, UV radiation. On one hand the biologically active IL-12p70 heterodimer blocks UV-induced immune suppression. In contrast, IL-12p40 homodimer may mediate the suppressive effect of UV radiation. This paradox indicates that IL-12 may have a greater regulatory role in the immune response than was previously suspected. ^