29 resultados para Clinical trials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Phase I clinical trial is considered the "first in human" study in medical research to examine the toxicity of a new agent. It determines the maximum tolerable dose (MTD) of a new agent, i.e., the highest dose in which toxicity is still acceptable. Several phase I clinical trial designs have been proposed in the past 30 years. The well known standard method, so called the 3+3 design, is widely accepted by clinicians since it is the easiest to implement and it does not need a statistical calculation. Continual reassessment method (CRM), a design uses Bayesian method, has been rising in popularity in the last two decades. Several variants of the CRM design have also been suggested in numerous statistical literatures. Rolling six is a new method introduced in pediatric oncology in 2008, which claims to shorten the trial duration as compared to the 3+3 design. The goal of the present research was to simulate clinical trials and compare these phase I clinical trial designs. Patient population was created by discrete event simulation (DES) method. The characteristics of the patients were generated by several distributions with the parameters derived from a historical phase I clinical trial data review. Patients were then selected and enrolled in clinical trials, each of which uses the 3+3 design, the rolling six, or the CRM design. Five scenarios of dose-toxicity relationship were used to compare the performance of the phase I clinical trial designs. One thousand trials were simulated per phase I clinical trial design per dose-toxicity scenario. The results showed the rolling six design was not superior to the 3+3 design in terms of trial duration. The time to trial completion was comparable between the rolling six and the 3+3 design. However, they both shorten the duration as compared to the two CRM designs. Both CRMs were superior to the 3+3 design and the rolling six in accuracy of MTD estimation. The 3+3 design and rolling six tended to assign more patients to undesired lower dose levels. The toxicities were slightly greater in the CRMs.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase I clinical trial is mainly designed to determine the maximum tolerated dose (MTD) of a new drug. Optimization of phase I trial design is crucial to minimize the number of enrolled patients exposed to unsafe dose levels and to provide reliable information to the later phases of clinical trials. Although it has been criticized about its inefficient MTD estimation, nowadays the traditional 3+3 method remains dominant in practice due to its simplicity and conservative estimation. There are many new designs that have been proven to generate more credible MTD estimation, such as the Continual Reassessment Method (CRM). Despite its accepted better performance, the CRM design is still not widely used in real trials. There are several factors that contribute to the difficulties of CRM adaption in practice. First, CRM is not widely accepted by the regulatory agencies such as FDA in terms of safety. It is considered to be less conservative and tend to expose more patients above the MTD level than the traditional design. Second, CRM is relatively complex and not intuitive for the clinicians to fully understand. Third, the CRM method take much more time and need statistical experts and computer programs throughout the trial. The current situation is that the clinicians still tend to follow the trial process that they are comfortable with. This situation is not likely to change in the near future. Based on this situation, we have the motivation to improve the accuracy of MTD selection while follow the procedure of the traditional design to maintain simplicity. We found that in 3+3 method, the dose transition and the MTD determination are relatively independent. Thus we proposed to separate the two stages. The dose transition rule remained the same as 3+3 method. After getting the toxicity information from the dose transition stage, we combined the isotonic transformation to ensure the monotonic increasing order before selecting the optimal MTD. To compare the operating characteristics of the proposed isotonic method and the other designs, we carried out 10,000 simulation trials under different dose setting scenarios to compare the design characteristics of the isotonic modified method with standard 3+3 method, CRM, biased coin design (BC) and k-in-a-row design (KIAW). The isotonic modified method improved MTD estimation of the standard 3+3 in 39 out of 40 scenarios. The improvement is much greater when the target is 0.3 other than 0.25. The modified design is also competitive when comparing with other selected methods. A CRM method performed better in general but was not as stable as the isotonic method throughout the different dose settings. The results demonstrated that our proposed isotonic modified method is not only easily conducted using the same procedure as 3+3 but also outperforms the conventional 3+3 design. It can also be applied to determine MTD for any given TTL. These features make the isotonic modified method of practical value in phase I clinical trials.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: For most cytotoxic and biologic anti-cancer agents, the response rate of the drug is commonly assumed to be non-decreasing with an increasing dose. However, an increasing dose does not always result in an appreciable increase in the response rate. This may especially be true at high doses for a biologic agent. Therefore, in a phase II trial the investigators may be interested in testing the anti-tumor activity of a drug at more than one (often two) doses, instead of only at the maximum tolerated dose (MTD). This way, when the lower dose appears equally effective, this dose can be recommended for further confirmatory testing in a phase III trial under potential long-term toxicity and cost considerations. A common approach to designing such a phase II trial has been to use an independent (e.g., Simon's two-stage) design at each dose ignoring the prior knowledge about the ordering of the response probabilities at the different doses. However, failure to account for this ordering constraint in estimating the response probabilities may result in an inefficient design. In this dissertation, we developed extensions of Simon's optimal and minimax two-stage designs, including both frequentist and Bayesian methods, for two doses that assume ordered response rates between doses. ^ Methods: Optimal and minimax two-stage designs are proposed for phase II clinical trials in settings where the true response rates at two dose levels are ordered. We borrow strength between doses using isotonic regression and control the joint and/or marginal error probabilities. Bayesian two-stage designs are also proposed under a stochastic ordering constraint. ^ Results: Compared to Simon's designs, when controlling the power and type I error at the same levels, the proposed frequentist and Bayesian designs reduce the maximum and expected sample sizes. Most of the proposed designs also increase the probability of early termination when the true response rates are poor. ^ Conclusion: Proposed frequentist and Bayesian designs are superior to Simon's designs in terms of operating characteristics (expected sample size and probability of early termination, when the response rates are poor) Thus, the proposed designs lead to more cost-efficient and ethical trials, and may consequently improve and expedite the drug discovery process. The proposed designs may be extended to designs of multiple group trials and drug combination trials.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In the United States, the Food and Drug Administration (FDA) regulates clinical trials. These regulations address good clinical practices as well as human subject protection (FDA, 2012). One of the most important legal and ethical concerns in clinical trials is informed consent. 21 CFR 50 governs human subjects research. Part 50.24 provides an emergency research exception to the informed consent requirement. Research was conducted to determine the appropriateness of this exception, whether the benefit justifies the exception, and its public health significance.^ Methods: A systematic literature review was conducted and articles were identified from peer-reviewed journals.^ Results: There is some variance in opinions regarding the appropriateness of the exception, but the literature reviewed found the study results of these trials justified the waiver.^ Conclusion: The exception to the informed consent requirement is likely appropriate and justified in emergency research when implemented within the specified guidelines.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of literature related to appointment-keeping served as the basis for the development of an organizational paradigm for the study of appointment-keeping in the Beta-blocker Heart Attack Trial (BHAT). Features of the organizational environment, demographic characteristics of BHAT enrollees, organizational structure and processes and previous organizational performance variables were measured so as to provide exploratory information relating to the appointment-keeping behavior of 3,837 participants enrolled at thirty-two Clinical Centers. Results suggest that the social context of individual behavior is an important consideration for the understanding of patient compliance. In particular, the degree to which previous organizational performance--as measured by obtaining recruitment goals--and the ability to utilize resources had particularly strong bivariate associations with appointment-keeping. Implications for future theory development, research and practical implications were provided as was a suggestion for the development of multidisciplinary research efforts conducted within the context of Centers for the study and application of adherence behaviors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-center clinical trials are very common in the development of new drugs and devices. One concern in such trials, is the effect of individual investigational sites enrolling small numbers of patients on the overall result. Can the presence of small centers cause an ineffective treatment to appear effective when treatment-by-center interaction is not statistically significant?^ In this research, simulations are used to study the effect that centers enrolling few patients may have on the analysis of clinical trial data. A multi-center clinical trial with 20 sites is simulated to investigate the effect of a new treatment in comparison to a placebo treatment. Twelve of these 20 investigational sites are considered small, each enrolling less than four patients per treatment group. Three clinical trials are simulated with sample sizes of 100, 170 and 300. The simulated data is generated with various characteristics, one in which treatment should be considered effective and another where treatment is not effective. Qualitative interactions are also produced within the small sites to further investigate the effect of small centers under various conditions.^ Standard analysis of variance methods and the "sometimes-pool" testing procedure are applied to the simulated data. One model investigates treatment and center effect and treatment-by-center interaction. Another model investigates treatment effect alone. These analyses are used to determine the power to detect treatment-by-center interactions, and the probability of type I error.^ We find it is difficult to detect treatment-by-center interactions when only a few investigational sites enrolling a limited number of patients participate in the interaction. However, we find no increased risk of type I error in these situations. In a pooled analysis, when the treatment is not effective, the probability of finding a significant treatment effect in the absence of significant treatment-by-center interaction is well within standard limits of type I error. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epidermal growth factor receptor (EGFR) is a cell membrane tyrosine kinase receptor and plays a pivotal role in regulating cell growth, differentiation, cell cycle, and tumorigenesis. Deregulation of EGFR causes many diseases including cancers. Intensive investigation of EGFR alteration in human cancers has led to profound progress in developing drugs to target EGFR-mediated cancers. While exploring possible synergistic enhancement of therapeutic efficacy by combining EGFR tyrosine kinase inhibitors (TKI) with other anti-cancer agents, we observed that suberoylanilide hydroxamic acid (SAHA, a deacetylase inhibitor) enhanced TKI-induced cancer cell death, which further led us to question whether SAHA-mediated sensitization to TKI was associated with EGFR acetylation. What we know so far is that SAHA can inhibit class I and II histone deacetylases (HDACs), which could possibly preserve acetylation of underlying HDAC-targeted proteins including both histone and non-histone proteins. In addition, it has been reported that an HDAC inhibitor, TSA, enhanced EGFR phosphorylation in ovarian cancer cells. EGFR acetylation has also been reported to play a role in the regulation of EGFR endocytosis recently. These observations indicate that there might be an intrinsic correlation between acetylation and phosphorylation of EGFR. In other words, the interplay between EGFR acetylation and phosphorylation may contribute to HDAC inhibitors (HDACi)-augmented EGFR phosphorylation. In this investigation, we showed that CBP acetyltransferase acetylated EGFR in vivo. In response to EGF stimulation, CBP rapidly translocated from the nucleus to the cytoplasm. We also demonstrated protein-protein interaction between CBP and EGFR as well as the enhancement of EGFR acetylation by CBP. Moreover, EGFR acetylation enhanced EGFR tyrosine phosphorylation and augmented its association with Src kinase. Acetylation-deficient EGFR mutant (EGFR-K3R) significantly reduced the function and activity of EGFR. Furthermore, ectopic expression of EGFR-K3R mutant abrogated its ability to respond to EGF-induced cell proliferation, DNA synthesis, and anchorage-independent growth using cell-based assays and tumor growth in nude mice. In addition, we demonstrated that EGFR expression was associated with SAHA resistance in the treatment of cancer cells that overexpress EGFR. The knockdown of EGFR in MDA-MB-468 breast cancer cells could sensitize the cells to respond to SAHA. The overexpression of EGFR in SAHA-sensitive MDA-MB-453 breast cancer cells rendered the cells resistant to SAHA. Together, these findings suggest that EGFR plays an important role in SAHA resistance in breast carcinoma cells that we tested. The combination therapy of HDACi with TKI has been proposed for treating cancers with aberrant expression of EGFR. The evidence from pre-clinical or clinical trials demonstrated significant enhancement of therapeutic efficacy by using such a combination therapy. Our in vivo study also demonstrated that the combination of SAHA and TKI for the treatment of breast cancer significantly reduced tumor burden compared with either SAHA or TKI alone. The significance of our study elucidated another possible underlying molecular mechanism by which HDACi mediated sensitization to TKI. Our results unveiled a critical role of EGFR acetylation that regulates EGFR tyrosine phosphorylation and may further provide an experiment-based rationale for combinatorial targeted therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation explores phase I dose-finding designs in cancer trials from three perspectives: the alternative Bayesian dose-escalation rules, a design based on a time-to-dose-limiting toxicity (DLT) model, and a design based on a discrete-time multi-state (DTMS) model. We list alternative Bayesian dose-escalation rules and perform a simulation study for the intra-rule and inter-rule comparisons based on two statistical models to identify the most appropriate rule under certain scenarios. We provide evidence that all the Bayesian rules outperform the traditional ``3+3'' design in the allocation of patients and selection of the maximum tolerated dose. The design based on a time-to-DLT model uses patients' DLT information over multiple treatment cycles in estimating the probability of DLT at the end of treatment cycle 1. Dose-escalation decisions are made whenever a cycle-1 DLT occurs, or two months after the previous check point. Compared to the design based on a logistic regression model, the new design shows more safety benefits for trials in which more late-onset toxicities are expected. As a trade-off, the new design requires more patients on average. The design based on a discrete-time multi-state (DTMS) model has three important attributes: (1) Toxicities are categorized over a distribution of severity levels, (2) Early toxicity may inform dose escalation, and (3) No suspension is required between accrual cohorts. The proposed model accounts for the difference in the importance of the toxicity severity levels and for transitions between toxicity levels. We compare the operating characteristics of the proposed design with those from a similar design based on a fully-evaluated model that directly models the maximum observed toxicity level within the patients' entire assessment window. We describe settings in which, under comparable power, the proposed design shortens the trial. The proposed design offers more benefit compared to the alternative design as patient accrual becomes slower.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Clinical oncology trials are hampered by low accrual rates. Less than 5% of adult cancer patients are treated on a clinical trial. We aimed to evaluate clinical trial enrollment in our Multidisciplinary Prostate Cancer Clinic and to assess if a clinical trial initiative, introduced in 2006, increased our trial enrollment.Methods: Prostate cancer patients with non-metastatic disease who were seen in the clinic from 2004 to 2008 were included in the analysis. Men were categorized by whether they were seen before or after the clinical trial enrollment initiative started in 2006. The initiative included posting trial details in the clinic, educating patients about appropriate clinical trial options during the treatment recommendation discussion, and providing patients with documentation of trials offered to them. Univariate and multivariate (MVA) logistic regression analysis evaluated the impact of patient characteristics and the clinical trial initiative on clinical trial enrollment.Results: The majority of the 1,370 men were white (83%), and lived within the surrounding counties or state (69.4%). Median age was 64.2 years. Seventy-three point five percent enrolled in at least one trial and 28.5% enrolled in more than one trial. Sixty-seven percent enrolled in laboratory studies, 18% quality of life studies, 13% novel studies, and 3.7% procedural studies. On MVA, men seen in later years (p < 0.0001) were more likely to enroll in trials. The proportion of men enrolling increased from 38.9% to 84.3% (p<0.0001) after the clinical trial initiative. On MVA, older men (p < 0.0001) were less likely to enroll in clinical trials. There was a trend toward men in the high-risk group being more likely to participate in clinical trials (p = 0.056). There was a second trend for men of Hispanic, Asian, Native American and Indian decent being less likely to participate in clinical trials (p = 0.054).Conclusion: Clinical trial enrollment in the multidisciplinary clinic increased after introduction of a clinical trial initiative. Older men were less likely to enroll in trials. We speculate we achieved high enrollment rates because 1) specific trials are discussed at time of treatment recommendations, 2) we provide a letter documenting offered trials and 3) we introduce patients to the research team at the same clinic visit if they are interested in trial participation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hepatitis B infection is a major public health problem of global proportions. It is estimated that 2 billion people worldwide are infected by the Hepatitis B virus (HBV) at some point, and 350 million are chronic carriers. The Centers for Disease Control and Prevention (CDC) report an incidence in the United States of 140,000–320,000 infections each year (asymptomatic and symptomatic), and estimate 1–1.25 million people are chronically infected. Hepatitis B and its chronic complications (cirrhosis of the liver, liver failure, hepatocellular carcinoma) responsible for 4,000–5,000 deaths in America each year. ^ One quarter of those who become chronic carriers develop progressive liver disease, and chronic HBV infection is thought to be responsible for 60 million cases of cirrhosis worldwide, surpassing alcohol as a cause of liver disease. Since there are few treatment options for the person chronically infected with Hepatitis B, and what is available is expensive, prevention is clearly best strategy for combating this disease. ^ Since the approval of the Hepatitis B vaccine in 1981, national and international vaccination campaigns have been undertaken for the prevention of Hepatitis B. Despite encouraging results, however, studies indicate that prevalence rates of Hepatitis B infection have not been significantly reduced in certain high risk populations because vaccination campaigns targeting those groups do not exist and opportunities for vaccination by individual physicians in clinical settings are often missed. Many of the high-risk individuals who go unvaccinated are women of childbearing age, and a significant proportion of these women become infected with the Hepatitis B virus (HBV) during pregnancy. Though these women are often seen annually or for prenatal care (because of the close spacing of their children and their high rate of fertility), the Hepatitis B vaccine series is seldom recommended by their health care provider. In 1993, ACOG issued a statement recommending Hepatitis B vaccination of pregnant women who were defined as high-risk by diagnosis of a sexually transmitted disease. ^ Hepatitis B vaccine has been extensively studied in the non-pregnant population. The overall efficacy of the vaccine in infants, children and adults is greater than 90%. In the small clinical trials to date, the vaccine seemed to be effective in those pregnant women receiving 3 doses; however, by using the usual 0, 1 and 6 month regimen, most pregnant women were unable to complete a full series during pregnancy. There is data now available supporting the use of an "accelerated" dosing schedule at 0, 1 and 4 months. This has not been evaluated in pregnant women. A clinical trial proving the efficacy of the 0, 1, 4 schedule and its feasibility in this population would add significantly to the body of research in this area, and would have implications for public health policy. Such a trial was undertaken in the Parkland Memorial Hospital Obstetrical Infectious Diseases clinic. In this study, the vaccine was very well tolerated with no major adverse events reported, 90% of fully vaccinated patients achieved immunity, and only Body Mass Index (BMI) was found to be a significant factor affecting efficacy. This thesis will report the results of the trial and compare it to previous trials, and will discuss barriers to implementation, lessons learned and implications for future trials. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

RAS-ERK-MAPK (Mitogen-activated protein kinase) pathway plays an essential role in proliferation, differentiation, and tumor progression. In this study, we showed that ERK downregulated FOXO3a through directly interacting with and phosphorylating FOXO3a at Serine 294, Serine 344, and Serine 425. ERK-phosphorylated FOXO3a was degraded by MDM2-mediated ubiquitin-proteosome pathway. FOXO3a phosphorylation and degradation consequently promoted cell proliferation and tumorigenesis. However, the non-phosphorylated FOXO3a mutant, which was resistant to the interaction and degradation by MDM2, resulted in inhibition of tumor formation. Forkhead O transcription factors (FOXOs) are important in the regulation of cellular functions including cell cycle arrest and cell death. Perturbation of FOXOs function leads to deregulated cell proliferation and cancer. Inactivation of FOXO proteins by activation of cell survival pathways, such as PI3K/AKT/IKK, is associated with tumorigenesis. Our study will further highlight FOXOs as new therapeutic targets in a broad spectrum of cancers. ^ Chemotherapeutic drug resistance is the most concerned problem in cancer therapy as resistance ultimately leads to treatment failure of cancer patients. In another study, we showed that blocking ERK activity with AZD6244, an established MEK1/2 inhibitor currently under human cancer clinical trials, enhances FOXO3a expression in various human cancer cell lines in vitro, and also in human colon cancer cell xenografts in vivo. Knocking down FOXO3a and its downstream gene Bim impaired AZD6244-induced growth suppression, whereas restoring activation of FOXO3a sensitized human cancer cell to AZD6244-induced growth arrest and apoptosis. More importantly, AZD6244-resistant cancer cells showed impaired endogenous FOXO3a nuclear translocation, reduced FOXO3a-Bim promoter association and significantly decreased Bim expression in response to AZD6244. AZD6244-resistant cancer cells can be sensitized to API-2 (an AKT inhibitor) and LY294002 (a PI3K inhibitor) in suppressing cell growth and colony formation, these inhibitors were known to enhance FOXO3a activity/nuclear translocation through inhibiting PI3K-AKT pathway. This study reveals novel molecular mechanism contributing to AZD6244-resistance through regulation of FOXO3a activity, further provides significant clinical implication of combining AZD6244 with PI3K/AKT inhibitors for sensitizing AZD6244-resistant cancer cells by activating FOXO3a. FOXO3a activation can be an essential pharmacological target and indicator to mediate and predict AZD6244 efficacy in clinical use. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many public health agencies and researchers are interested in comparing hospital outcomes, for example, morbidity, mortality, and hospitalization across areas and hospitals. However, since there is variation of rates in clinical trials among hospitals because of several biases, we are interested in controlling for the bias and assessing real differences in clinical practices. In this study, we compared the variations between hospitals in rates of severe Intraventricular Haemorrhage (IVH) infant using Frequentist statistical approach vs. Bayesian hierarchical model through simulation study. The template data set for simulation study was included the number of severe IVH infants of 24 intensive care units in Australian and New Zealand Neonatal Network from 1995 to 1997 in severe IVH rate in preterm babies. We evaluated the rates of severe IVH for 24 hospitals with two hierarchical models in Bayesian approach comparing their performances with the shrunken rates in Frequentist method. Gamma-Poisson (BGP) and Beta-Binomial (BBB) were introduced into Bayesian model and the shrunken estimator of Gamma-Poisson (FGP) hierarchical model using maximum likelihood method were calculated as Frequentist approach. To simulate data, the total number of infants in each hospital was kept and we analyzed the simulated data for both Bayesian and Frequentist models with two true parameters for severe IVH rate. One was the observed rate and the other was the expected severe IVH rate by adjusting for five predictors variables for the template data. The bias in the rate of severe IVH infant estimated by both models showed that Bayesian models gave less variable estimates than Frequentist model. We also discussed and compared the results from three models to examine the variation in rate of severe IVH by 20th centile rates and avoidable number of severe IVH cases. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objective of this study was to determine the external validity of a clinical prediction rule developed by the European Multicenter Study on Human Spinal Cord Injury (EM-SCI) to predict the ambulation outcomes 12 months after traumatic spinal cord injury. Data from the North American Clinical Trials Network (NACTN) data registry with approximately 500 SCI cases were used for this validity study. The predictive accuracy of the EM-SCI prognostic model was evaluated using calibration and discrimination based on 231 NACTN cases. The area under the receiver-operating-characteristics curve (ROC) curve was 0.927 (95% CI 0.894 – 0.959) for the EM-SCI model when applied to NACTN population. This is lower than the AUC of 0.956 (95% CI 0.936 – 0.976) reported for the EM-SCI population, but suggests that the EM-SCI clinical prediction rule distinguished well between those patients in the NACTN population who were able to achieve independent ambulation and those who did not achieve independent ambulation. The calibration curve suggests that higher the prediction score is, the better the probability of walking with the best prediction for AIS D patients. In conclusion, the EM-SCI clinical prediction rule was determined to be generalizable to the adult NACTN SCI population.^