2 resultados para Service Quality, Repurchase Intent, Customer Satisfaction
em Digital Peer Publishing
Resumo:
Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.
Resumo:
Opaque products enable service providers to hide specific characteristics of their service fulfillment from the customer until after purchase. Prominent examples include internet-based service providers selling airline tickets without defining details, such as departure time or operating airline, until the booking has been made. Owing to the resulting flexibility in resource utilization, the traditional revenue management process needs to be modified. In this paper, we extend dynamic programming decomposition techniques widely used for traditional revenue management to develop an intuitive capacity control approach that allows for the incorporation of opaque products. In a simulation study, we show that the developed approach significantly outperforms other well-known capacity control approaches adapted to the opaque product setting. Based on the approach, we also provide computational examples of how the share of opaque products as well as the degree of opacity can influence the results.