7 resultados para 190205 Interactive Media

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the functioning of brains is an extremely challenging endeavour - both for researches as well as for students. Interactive media and tools, like simulations, databases and visualizations or virtual laboratories proved to be not only indispensable in research but also in education to help understanding brain function. Accordingly, a wide range of such media and tools are now available and it is getting increasingly difficult to see an overall picture. Written by researchers, tool developers and experienced academic teachers, this special issue of Brains, Minds & Media covers a broad range of interactive research media and tools with a strong emphasis on their use in neural and cognitive sciences education. The focus lies not only on the tools themselves, but also on the question of how research tools can significantly enhance learning and teaching and how a curricular integration can be achieved. This collection gives a comprehensive overview of existing tools and their usage as well as the underlying educational ideas and thus provides an orientation guide not only for teaching researchers but also for interested teachers and students.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years interactive media and tools, like scientific simulations and simulation environments or dynamic data visualizations, became established methods in the neural and cognitive sciences. Hence, university teachers of neural and cognitive sciences are faced with the challenge to integrate these media into the neuroscientific curriculum. Especially simulations and dynamic visualizations offer great opportunities for teachers and learners, since they are both illustrative and explorable. However, simulations bear instructional problems: they are abstract, demand some computer skills and conceptual knowledge about what simulations intend to explain. By following two central questions this article provides an overview on possible approaches to be applied in neuroscience education and opens perspectives for their curricular integration: (i) How can complex scientific media be transformed for educational use in an efficient and (for students on all levels) comprehensible manner and (ii) by what technical infrastructure can this transformation be supported? Exemplified by educational simulations for the neurosciences and their application in courses, answers to these questions are proposed a) by introducing a specific educational simulation approach for the neurosciences b) by introducing an e-learning environment for simulations, and c) by providing examples of curricular integration on different levels which might help academic teachers to integrate newly created or existing interactive educational resources in their courses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ModelDB's mission is to link computational models and publications, supporting the field of computational neuroscience (CNS) by making model source code readily available. It is continually expanding, and currently contains source code for more than 300 models that cover more than 41 topics. Investigators, educators, and students can use it to obtain working models that reproduce published results and can be modified to test for new domains of applicability. Users can browse ModelDB to survey the field of computational neuroscience, or pursue more focused explorations of specific topics. Here we describe tutorials and initial experiences with ModelDB as an interactive educational tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovations in hardware and network technologies lead to an exploding number of non-interrelated parallel media streams. Per se this does not mean any additional value for consumers. Broadcasting and advertisement industries have not yet found new formats to reach the individual user with their content. In this work we propose and describe a novel digital broadcasting framework, which allows for the live staging of (mass) media events and improved consumer personalisation. In addition new professions for future TV production workflows which will emerge are described, namely the 'video composer' and the 'live video conductor'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What does it mean for curriculum to be interactive? It encourages student engagement and active participation in both individual and group work. It offers teachers a coherent set of materials to choose from that can enhance their classes. It is the product of on-going development and continuous improvement based on research and feedback from the field. This paper will introduce work in progress from the Center for Excellence in Education, Science, and Technology (CELEST), an NSF Science of Learning Center. Among its many goals, CELEST is developing a unique educational curriculum, an interactive curriculum based upon models of mind and brain. Teachers, administrators, and governments are naturally concerned with how students learn. Students are greatly concerned about how minds work, including how to learn. CELEST aims to introduce curricula that not only meet current U.S. standards in mathematics, science, and psychology but also influence plans to improve those standards. Software and support materials are in development and available at http://cns.bu.edu/celest/private/. Interested parties are invited to contact the author for access.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BrainMaps.org is an interactive high-resolution digital brain atlas and virtual microscope that is based on over 20 million megapixels of scanned images of serial sections of both primate and non-primate brains and that is integrated with a high-speed database for querying and retrieving data about brain structure and function over the internet. Complete brain datasets for various species, including Homo sapiens, Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, and Tyto alba, are accessible online. The methods and tools we describe are useful for both research and teaching, and can be replicated by labs seeking to increase accessibility and sharing of neuroanatomical data. These tools offer the possibility of visualizing and exploring completely digitized sections of brains at a sub-neuronal level, and can facilitate large-scale connectional tracing, histochemical and stereological analyses.