2 resultados para Hydrogeology

em Digital Commons - Montana Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creating Lakes from Open Pit Mines: Processes and Considerations, Emphasis on Northern Environments. This document summarizes the literature of mining pit lakes (through 2007), with a particular focus on issues that are likely to be of special relevance to the creation and management of pit lakes in northern climates. Pit lakes are simply waterbodies formed by filling the open pit left upon the completion of mining operations with water. Like natural lakes, mining pit lakes display a huge diversity in each of these subject areas. However, pit lakes are young and therefore are typically in a non-equilibrium state with respect to their rate of filling, water quality, and biology. Separate sections deal with different aspects of pit lakes, including their morphometry, geology, hydrogeology, geochemistry, and biology. Depending on the type and location of the mine, there may be opportunities to enhance the recreational or ecological benefits of a given pit lake, for example, by re-landscaping and re-vegetating the shoreline, by adding engineered habitat for aquatic life, and maintaining water quality. The creation of a pit lake may be a regulatory requirement to mitigate environmental impacts from mining operations, and/or be included as part of a closure and reclamation plan. Based on published case studies of pit lakes, large-scale bio-engineering projects have had mixed success. A common consensus is that manipulation of pit lake chemistry is difficult, expensive, and takes many years to achieve remediation goals. For this reason, it is prudent to take steps throughout mine operation to reduce the likelihood of future water quality problems upon closure. Also, it makes sense to engineer the lake in such a way that it will achieve its maximal end-use potential, whether it be permanent and safe storage of mine waste, habitat for aquatic life, recreation, or water supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Upper Jefferson River is one of the most dewatered rivers in Montana. The river exists in an intermontane basin filled with sediment transported from the Highland Mountains to the west, the Tobacco Root Mountains to the east, and the Jefferson River from the south. The Upper Jefferson River Valley is highly dependent on the Jefferson River as the main industry in the valley is agriculture. A majority of the valley is irrigated and used to grow crops, and a good portion is also used for cattle grazing. The residents of the Upper Jefferson River Valley use the aquifer as the main source of potable water. The Jefferson River is also widely used for recreation. This study took place in the Waterloo area of the Upper Jefferson River Valley, approximately 20 miles south of Whitehall, Montana. The Waterloo area provides significant groundwater base flow to the Jefferson River, which is particularly important during the late irrigation season when the river is severely dewatered, and elevated surface-water temperatures occur, creating irrigation water shortages and poor trout habitat. This area contains two springfed streams, Willow Springs and Parson’s Slough, which discharge to the Jefferson River providing cool water in the late season as well as providing the most important trout spawning habitat in the valley. The area is bordered on both the east and west by irrigation ditches, and about 60% of the study area is irrigated. Tile drains were installed in the study area in close proximity to Parsons Slough causing some concern by neighboring residents. This study evaluated relationships between surface water, groundwater, and irrigation practices so that water managers and others can make informed management decisions about the Upper Jefferson River. Data was collected via a network of groundwater wells and surface-water sites. Additionally, water-quality samples were taken and an aquifer test was conducted to determine aquifer properties. The field data were analyzed and a groundwater budget was created in order to evaluate the aquifer. Results of the groundwater budget show that seepage from the irrigation canals and irrigation recharge have the biggest influence on recharge of the aquifer. There is significant groundwater outflow from the aquifer in the spring-fed streams as well as discharge to the Jefferson River. In comparing previous study results to this study’s results, there is no evidence of the water table decreasing due to irrigation practice changes or tile drain installation. However, given the amount of recharge irrigation practices contribute to the aquifer, if significant changes were made, they may affect groundwater elevations. Also lining the irrigation ditches would have a significant impact on the aquifer, as the amount of seepage would be greatly reduced.