4 resultados para enzyme activity

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waste effluents from the forest products industry are sources of lignocellulosic biomass that can be converted to ethanol by yeast after pretreatment. However, the challenge of improving ethanol yields from a mixed pentose and hexose fermentation of a potentially inhibitory hydrolysate still remains. Hardboard manufacturing process wastewater (HPW) was evaluated at a potential feedstream for lignocellulosic ethanol production by native xylose-fermenting yeast. After screening of xylose-fermenting yeasts, Scheffersomyces stipitis CBS 6054 was selected as the ideal organism for conversion of the HPW hydrolysate material. The individual and synergistic effects of inhibitory compounds present in the hydrolysate were evaluated using response surface methodology. It was concluded that organic acids have an additive negative effect on fermentations. Fermentation conditions were also optimized in terms of aeration and pH. Methods for improving productivity and achieving higher ethanol yields were investigated. Adaptation to the conditions present in the hydrolysate through repeated cell sub-culturing was used. The objectives of this present study were to adapt S. stipitis CBS6054 to a dilute-acid pretreated lignocellulosic containing waste stream; compare the physiological, metabolic, and proteomic profiles of the adapted strain to its parent; quantify changes in protein expression/regulation, metabolite abundance, and enzyme activity; and determine the biochemical and molecular mechanism of adaptation. The adapted culture showed improvement in both substrate utilization and ethanol yields compared to the unadapted parent strain. The adapted strain also represented a growth phenotype compared to its unadapted parent based on its physiological and proteomic profiles. Several potential targets that could be responsible for strain improvement were identified. These targets could have implications for metabolic engineering of strains for improved ethanol production from lignocellulosic feedstocks. Although this work focuses specifically on the conversion of HPW to ethanol, the methods developed can be used for any feedstock/product systems that employ a microbial conversion step. The benefit of this research is that the organisms will the optimized for a company's specific system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phytic acid is the major storage form of phosphorus and inositol in seeds and legumes. It forms insoluble phytate salts by chelating with positively charged mineral ions. Non-ruminant animals are not able to digest phytate due to the lack of phytases in their GI tracks, thus the undigested phytate is excreted leading to environmental contamination. Supplementation with phytases in animal feed has proven to be an effective strategy to alleviate nutritional and environmental issues. The unique catalytic and thermal stability properties of alkaline phytase from lily pollen (LlALP) suggest that it has the potential to be useful as a feed supplement. Our goal is to develop a method for the production of substantial amounts of rLlALP for animal feed and structural studies. rLlALP2 has been successfully expressed in the yeast, Pichia pastoris. However, expression yield was modest (8-10 mg/L). Gene copy number has been identified as an important parameter in enhancing protein yields. Multicopy clones were selected using Zeocin-resistance-based vectors and challenging transformants to high Zeocin levels under different conditions. Data indicate that increasing selection pressure led to the generation of clones with amplification of both rLlAlp2 and Zeor genes and the two genes were not equally amplified. Additionally, clones generated by step-wise methods led to clones with greater amplification. The effects of transgene copy number and gene sequence optimization on expression levels of rLlALP2 were examined. The data indicate that increasing the copy number of rLlAlp2 in transformed clones was detrimental to expression level. The use of a sequence-optimized rLlAlp2 (op-rLlAlp2) increased expression yield of the active enzyme by 25-50%, suggesting that transcription and translation efficiency are not major bottlenecks in the production of rLlALP2. Lowering induction temperature to 20 oC led to an increase in enzyme activity of 1.2 to 20-fold, suggesting that protein folding or post-translational processes may be limiting factors for rLlALP2 production. Cumulatively, optimization of copy number, gene sequence optimization and reduced temperature led to increase of rLlALP2 enzyme activity by three-fold (25-30 mg/L). In an effort to simplify the purification process of rLlALP2, extracellular expression of phytase was investigated. Extracellular expression is dependent on the presence of an appropriate secretion signal upstream of the transgene native signal peptide(s) present in the transgene may also influence secretion efficiency. The data suggest that deletion of both N- and C-terminal signal peptides of rLlALP2 enhanced α-mating factor (α-MF)-driven secretion of LlALP2 by four-fold. The secretion signal peptide of chicken egg white lysozyme was ineffective in secretion rLlALP2 in P. pastoris. To enhance rLlALP2 secretion, effectiveness of the strong inducible promoter (PAOX1) was compared with the constitutive promoter (PGAP). The intracellular yield of rLlALP2 was about four-fold greater under the control of PGAP compared to PAOX1 and extracellular expression level of rLlALP2 was around eight-fold (75-100 mg/L) greater. The successful production of active rLlALP2 in P. pastoris will allow us to conduct the animal feed supplementation studies and structural studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As global climate continues to change, it becomes more important to understand possible feedbacks from soils to the climate system. This dissertation focuses on soil microbial community responses to climate change factors in northern hardwood forests. Two soil warming experiments at Harvard Forest in Massachusetts, and a climate change manipulation experiment with both elevated temperature and increased moisture inputs in Michigan were sampled. The hyphal in-growth bag method was to understand how soil fungal biomass and respiration respond to climate change factors. Our results from phospholipid fatty acid (PLFA) analyses suggest that the hyphal in-growth bag method allows relatively pure samples of fungal hyphae to be partitioned from bacteria in the soil. The contribution of fungal hyphal respiration to soil respiration was examined in climate change manipulation experiments in Massachusetts and Michigan. The Harvard Forest soil warming experiments in Massachusetts are long-term studies with 8 and 18 years of +5 °C warming treatment. Hyphal respiration and biomass production tended to decrease with soil warming at Harvard Forest. This suggests that fungal hyphae adjust to higher temperatures by decreasing the amount of carbon respired and the amount of carbon stored in biomass. The Ford Forestry Center experiment in Michigan has a 2 x 2 fully factorial design with warming (+4-5 °C) and moisture addition (+30% average ambient growing season precipitation). This experiment was used to examine hyphal growth and respiration of arbuscular mycorrhizal fungi (AMF), soil enzymatic capacity, microbial biomass and microbial community structure in the soil over two years of experimental treatment. Results from the hyphal in-growth bag study indicate that AMF hyphal growth and respiration respond negatively to drought. Soil enzyme activities tend to be higher in heated versus unheated soils. There were significant temporal variations in enzyme activity and microbial biomass estimates. When microbial biomass was estimated using chloroform fumigation extractions there were no differences between experimental treatments and the control. When PLFA analyses were used to estimate microbial biomass we found that biomass responds negatively to higher temperatures and positively to moisture addition. This pattern was present for both bacteria and fungi. More information on the quality and composition of the organic matter and nutrients in soils from climate change manipulation experiments will allow us to gain a more thorough understanding of the mechanisms driving the patterns reported here. The information presented here will improve current soil carbon and nitrogen cycling models.