3 resultados para process measurement

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain functions, such as learning, orchestrating locomotion, memory recall, and processing information, all require glucose as a source of energy. During these functions, the glucose concentration decreases as the glucose is being consumed by brain cells. By measuring this drop in concentration, it is possible to determine which parts of the brain are used during specific functions and consequently, how much energy the brain requires to complete the function. One way to measure in vivo brain glucose levels is with a microdialysis probe. The drawback of this analytical procedure, as with many steadystate fluid flow systems, is that the probe fluid will not reach equilibrium with the brain fluid. Therefore, brain concentration is inferred by taking samples at multiple inlet glucose concentrations and finding a point of convergence. The goal of this thesis is to create a three-dimensional, time-dependent, finite element representation of the brainprobe system in COMSOL 4.2 that describes the diffusion and convection of glucose. Once validated with experimental results, this model can then be used to test parameters that experiments cannot access. When simulations were run using published values for physical constants (i.e. diffusivities, density and viscosity), the resulting glucose model concentrations were within the error of the experimental data. This verifies that the model is an accurate representation of the physical system. In addition to accurately describing the experimental brain-probe system, the model I created is able to show the validity of zero-net-flux for a given experiment. A useful discovery is that the slope of the zero-net-flux line is dependent on perfusate flow rate and diffusion coefficients, but it is independent of brain glucose concentrations. The model was simplified with the realization that the perfusate is at thermal equilibrium with the brain throughout the active region of the probe. This allowed for the assumption that all model parameters are temperature independent. The time to steady-state for the probe is approximately one minute. However, the signal degrades in the exit tubing due to Taylor dispersion, on the order of two minutes for two meters of tubing. Given an analytical instrument requiring a five μL aliquot, the smallest brain process measurable for this system is 13 minutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studying liquid fuel combustion is necessary to better design combustion systems. Through more efficient combustors and alternative fuels, it is possible to reduce greenhouse gases and harmful emissions. In particular, coal-derived and Fischer-Tropsch liquid fuels are of interest because, in addition to producing fewer emissions, they have the potential to drastically reduce the United States' dependence on foreign oil. Major academic research institutions like the Pennsylvania State University perform cutting-edge research in many areas of combustion. The Combustion Research Laboratory (CRL) at Bucknell University is striving to develop the necessary equipment to be capable of both independent and collaborative research efforts with Penn State and in the process, advance the CRL to the forefront of combustion studies. The focus of this thesis is to advance the capabilities of the Combustion Research Lab at Bucknell. Specifically, this was accomplished through a revision to a previously designed liquid fuel injector, and through the design and installation of a laser extinction system for the measurement of soot produced during combustion. The previous liquid fuel injector with a 0.005" hole did not behave as expected. Through spray testing the 0.005" injector with water, it was determined that experimental errors were made in the original pressure testing of the injector. Using data from the spray testing experiment, new theoretical hole sizes of the injector were calculated. New injectors with 0.007" and 0.0085" orifices were fabricated and subsequently tested to qualitatively validate their behavior. The injectors were installed in the combustion rig in the CRL and hot-fire tested with liquid heptane. The 0.0085" injector yielded a manageable fuel pressure and produced a broad flame. A laser extinction system was designed and installed in the CRL. This involved the fabrication of a number of custom-designed parts and the specification of laser extinction equipment for purchase. A standard operating procedure for the laser extinction system was developed to provide a consistent, safe method for measuring soot formation during combustion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on the physiological adaptation process has found that stress is associated with the rate of cortisol secretion, the main hormone that reflects stress. However, considerable variation among subjects has been reported. Using a sample of older adults (N=46), we tested the hypothesis that cortisol reactivity is composed of (1) a situation-related component representing hypothalamic influence on cortisol secretion observed on three different occasions, and (2) a stable component representing a general trait responsible for cortisol responses observed from occasion to occasion. LISREL VIII was used to test this hypothesis. Results indicated that a homogeneous reliability model was not supported by the data. A congeneric measurement model represented a better fit to the data. Results suggest that subjects have consistent patterns of response during separate experimental occasions. However, results do not suggest a consistent pattern of response over time. The main implication of these results is that salivary cortisol measures are sensitive to experimental stress situations. As such, this noninvasive method may be useful in examining adaptive responses to stress.