2 resultados para maternally-mediated genotype effect

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although stress is implicated in the pathophysiology of mood and anxiety disorders, not all individuals who suffer stressful life events develop psychopathology. Differential susceptibility to stress may be influenced by genetically mediated differences in hypothalamic-pituitary-adrenal (HPA) axis activity and moderation of the stress response by the opioid peptide beta-endorphin (beta-E). The present study investigated genetic contributions to coping behavior by examining anxious behavior of transgenic mice with varying capacities to synthesize beta-E [B6.129S2-Pomc(tm1Low)/J; regulated by insertion of a premature stop codon into one or both copies of the proopiomelanocortin (POMC) gene], both under normal conditions and following 3 min of forced swim (FS). Ten minutes after this stress exposure or a control manipulation, acutely food-deprived female and male transgenic mice were subjected to a novelty-suppressed feeding (NSF) test, during which their interaction with an almond slice located in the center of an open field box was measured. There was an interaction between genotype and stress for latency to approach the almond and whether or not the almond was approached, such that mice with low or absent beta-E displayed a stronger aversion to novelty-feeding after stress exposure than did mice with normal levels. These data provide evidence for a moderating effect of beta-E on the behavioral response to stress. Genotypic differences in anxious behavior emerged when mice were stressed prior to behavioral assessment, suggesting that beta-E plays a role in coping behavior. These findings indicate that genetic variability in sensitivity of the beta-E system to stress may contribute, at least in part, to heritable differences in stress reactivity as well as vulnerability to stress-related psychopathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work electrophoretically mediated micro-analysis (EMMA) is used in conjunction with short end injection to improve the in-capillary Jaffé assay for creatinine. Key advances over prior work include (i) using simulation to ensure intimate overlap of reagent plugs, (ii) using OH- to drive the reaction, (iii) using short-end injection to minimize analysis time and in-line product degradation. The potential-driven overlapping time with the EMMA approach, as well as the borate buffer background electrolyte (BGE) concentration and pH are optimized with the short end approach. The best conditions for short-end analyses would not have been predicted by the prior long end work, owing to a complex interplay of separation time and product degradation rates. Raw peak areas and flow-adjusted peak areas for the Jaffé reaction product (at 505 nm) are used to assess the sensitivity of the short-end EMMA approach. Optimal overlap conditions depend heavily on local conductivity differences within the reagent zone(s), as these differences cause dramatic voltage field differences, which effect reagent overlap dynamics. Simul 5.0, a dynamic simulation program for capillary electrophoresis (CE) systems, is used to understand the ionic boundaries and profiles that give rise to the experimentally obtained data for EMMA analysis. Overall, fast migration of hydroxide ions from the picrate zone makes difficult reagent overlap. In addition, the challenges associated with the simultaneous overlapping of three reagent zones are considered, and experimental results validate the predictions made by the simulation. With one set of “optimized” conditions including OH- (253 mM) as the third reagent zone the response was linear with creatinine concentration (R2 = 0.998) and reproducible over the clinically relevant range (0.08 to 0.1 mM) of standard creatinine concentrations. An LOD (S/N = 3) of 0.02 mM and LOQ (S/N=10) of 0.08 mM were determined. A significant improvement (43%) in assay sensitivity was obtained compared to prior work that considered only two reagents in the overlap.