7 resultados para Misconceptions

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Students frequently hold a number of misconceptions related to temperature, heat and energy. There is not currently a concept inventory with sufficiently high internal reliability to assess these concept areas for research purposes. Consequently, there is little data on the prevalence of these misconceptions amongst undergraduate engineering students. PURPOSE (HYPOTHESIS) This work presents the Heat and Energy Concept Inventory (HECI) to assess prevalent misconceptions related to: (1) Temperature vs. Energy, (2) Temperature vs. Perceptions of Hot and Cold, (3) Factors that affect the Rate vs. Amount of Heat Transfer and (4) Thermal Radiation. The HECI is also used to document the prevalence of misconceptions amongst undergraduate engineering students. DESIGN/METHOD Item analysis, guided by classical test theory, was used to refine individual questions on the HECI. The HECI was used in a one group, pre-test-post-test design to assess the prevalence and persistence of targeted misconceptions amongst a population of undergraduate engineering students at diverse institutions. RESULTS Internal consistency reliability was assessed using Kuder-Richardson Formula 20; values were 0.85 for the entire instrument and ranged from 0.59 to 0.76 for the four subcategories of the HECI. Student performance on the HECI went from 49.2% to 54.5% after instruction. Gains on each of the individual subscales of the HECI, while generally statistically significant, were similarly modest. CONCLUSIONS The HECI provides sufficiently high estimates of internal consistency reliability to be used as a research tool to assess students' understanding of the targeted concepts. Use of the instrument demonstrates that student misconceptions are both prevalent and resistant to change through standard instruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Misconceptions exist in all fields of learning and develop through a person’s preconception of how the world works. Students with misconceptions in chemical engineering are not capable of correctly transferring knowledge to a new situation and will likely arrive at an incorrect solution. The purpose of this thesis was to repair misconceptions in thermodynamics by using inquiry-based activities. Inquiry-based learning is a method of teaching that involves hands-on learning and self-discovery. Previous work has shown inquiry-based methods result in better conceptual understanding by students relative to traditional lectures. The thermodynamics activities were designed to guide students towards the correct conceptual understanding through observing a preconception fail to hold up through an experiment or simulation. The developed activities focus on the following topics in thermodynamics: “internal energy versus enthalpy”, “equilibrium versus steady state”, and “entropy”. For each topic, two activities were designed to clarify the concept and assure it was properly grasped. Each activity was coupled with an instructions packet containing experimental procedure as well as pre- and post-analysis questions, which were used to analyze the effect of the activities on the students’ responses. Concept inventories were used to monitor students’ conceptual understanding at the beginning and end of the semester. The results did not show a statistically significant increase in the overall concept inventory scores for students who performed the activities compared to traditional learning. There was a statistically significant increase in concept area scores for “internal energy versus enthalpy” and “equilibrium versus steady state”. Although there was not a significant increase in concept inventory scores for “entropy”, written analyses showed most students’ misconceptions were repaired. Students transferred knowledge effectively and retained most of the information in the concept areas of “internal energy versus enthalpy” and “equilibrium versus steady state”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and effective demonstration to help students comprehend phase diagrams and understand phase equilibria and transformations is created using common chemical solvents available in the laboratory. Common misconceptions surrounding phase diagram operations, such as components versus phases, reversibility of phase transformations, and the lever rule are addressed. Three different binary liquid mixtures of varying compatibility create contrastive phase equilibrium cases, where colorful dyes selectively dissolved in each of corresponding phases allow for quick and unambiguous perceptions of solubility limit and phase transformations. Direct feedback and test scores from a group of students show evidence of the effectiveness of the visual and active teaching tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Philosophers and laymen alike have often used morality to invite misconceptions of human life into ethics, and also of ethics into human life. The Kant/Williams discourse provides a rich backdrop on which to consider these misconceptions. But the misconceptionsof morality involved are just as numerous and just as serious. One thing that the Kant/Williams discourse shows is this: that ethics can be neither contained by nor cultivated without morality. Though much of Williams’ critique of Kantian morality is quite astute, thephilosophical and ethical wisdoms of morality abound in spite of these. Morality understands the fundamental condition of moral loss, and the sometimes irreducible quandaries that this condition places human beings in. It understands the nature of the moral law, and theintricacies that the levels of letter and spirit invite into human life. Perhaps more importantly, it understands the uncompromising relationship between moral loss and moral law, and how the human navigation of this relationship leads into the ethical realm via giving rise to ethical conviction. Finally, for all of its pressures, morality abounds in valuable wisdoms for the one discovering that the human soul occupies a place of ethical significance in the world. It is responsible for pointing out, grounding and providing a framework for some of the most fundamental truths about the world and human beings; and these are essential to any viable ethical theory and sensible conception of human life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Misconceptions about heat and temperature have been seen across all educational levels, even in undergraduate engineering courses. One way these misconceptions can be remediated is through instructional methods, such as inquiry-based activities. Performance on assessments in sciences and engineering has been found to vary when gender is taken into consideration. The purpose of the current study was to investigate the effects of participant gender, professor gender, and level of inquiry-based activities on the conceptual understanding of 247 undergraduate engineering students in thermodynamics. A pre-test post-test design was used. Conceptual understanding of thermodynamics was measured by students’ scores on the Concept Inventory for Engineering Thermodynamics (CIET; Vigeant, Prince & Nottis, 2011). Inquiry-based activities were developed by the researchers and given to professors who determined if they would do all, some, or none of them as they taught. Significant differences were found among participants of different gender, different gender of the professor instructing the course, and level of inquiry-based activity. The participants who were exposed to all of the activities provided didsignificantly better on the post-test than those who were only exposed to some or none of the activities. The results from this current study indicated that differences in gender, professorgender, and level of inquiry-based activity has an effect on undergraduate engineering students’ conceptual understanding of thermodynamics. Future research should investigate more factorsthat contribute to lower representation of women in the engineering field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering students continue to develop and show misconceptions due to prior knowledge and experiences (Miller, Streveler, Olds, Chi, Nelson, & Geist, 2007). Misconceptions have been documented in students’ understanding of heat transfer(Krause, Decker, Niska, Alford, & Griffin, 2003) by concept inventories (e.g., Jacobi,Martin, Mitchell, & Newell, 2003; Nottis, Prince, Vigeant, Nelson, & Hartsock, 2009). Students’ conceptual understanding has also been shown to vary by grade point average (Nottis et al., 2009). Inquiry-based activities (Nottis, Prince, & Vigeant, 2010) haveshown some success over traditional instructional methods (Tasoglu & Bakac, 2010) in altering misconceptions. The purpose of the current study was to determine whether undergraduate engineering students’ understanding of heat transfer concepts significantly changed after instruction with eight inquiry-based activities (Prince & Felder, 2007) supplementing instruction and whether students’ self reported GPA and prior knowledge, as measured by completion of specific engineering courses, affected these changes. The Heat and Energy Concept Inventory (Prince, Vigeant, & Nottis, 2010) was used to assess conceptual understanding. It was found that conceptual understanding significantly increased from pre- to post-test. It was also found that GPA had an effect on conceptual understanding of heat transfer; significant differences were found in post-test scores onthe concept inventory between GPA groups. However, there were mixed results when courses previously taken were analyzed. Future research should strive to analyze how prior knowledge effects conceptual understanding and aim to reduce the limitations of the current study such as, sampling method and methods of measuring GPA and priorknowledge.