2 resultados para 010206 Operations Research

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For virtually all hospitals, utilization rates are a critical managerial indicator of efficiency and are determined in part by turnover time. Turnover time is defined as the time elapsed between surgeries, during which the operating room is cleaned and preparedfor the next surgery. Lengthier turnover times result in lower utilization rates, thereby hindering hospitals’ ability to maximize the numbers of patients that can be attended to. In this thesis, we analyze operating room data from a two year period provided byEvangelical Community Hospital in Lewisburg, Pennsylvania, to understand the variability of the turnover process. From the recorded data provided, we derive our best estimation of turnover time. Recognizing the importance of being able to properly modelturnover times in order to improve the accuracy of scheduling, we seek to fit distributions to the set of turnover times. We find that log-normal and log-logistic distributions are well-suited to turnover times, although further research must validate this finding. Wepropose that the choice of distribution depends on the hospital and, as a result, a hospital must choose whether to use the log-normal or the log-logistic distribution. Next, we use statistical tests to identify variables that may potentially influence turnover time. We find that there does not appear to be a correlation between surgerytime and turnover time across doctors. However, there are statistically significant differences between the mean turnover times across doctors. The final component of our research entails analyzing and explaining the benefits of introducing control charts as a quality control mechanism for monitoring turnover times in hospitals. Although widely instituted in other industries, control charts are notwidely adopted in healthcare environments, despite their potential benefits. A major component of our work is the development of control charts to monitor the stability of turnover times. These charts can be easily instituted in hospitals to reduce the variabilityof turnover times. Overall, our analysis uses operations research techniques to analyze turnover times and identify manners for improvement in lowering the mean turnover time and thevariability in turnover times. We provide valuable insight into a component of the surgery process that has received little attention, but can significantly affect utilization rates in hospitals. Most critically, an ability to more accurately predict turnover timesand a better understanding of the sources of variability can result in improved scheduling and heightened hospital staff and patient satisfaction. We hope that our findings can apply to many other hospital settings.