109 resultados para glucose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effect of self-monitoring of blood glucose (SMBG) on glycaemic control in non-insulin treated patients with type 2 diabetes by means of a systematic review and meta-analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. METHODS: In 69 patients with severe traumatic brain injury (TBI), cerebral metabolism was monitored by assessing changes in arterial and jugular venous blood at normocarbia (partial arterial pressure of carbon dioxide (paCO2) 4.4 to 5.6 kPa), normoxia (partial arterial pressure of oxygen (paO2) 9 to 20 kPa), stable haematocrit (27 to 36%), brain temperature 35 to 38 degrees C, and cerebral perfusion pressure (CPP) 70 to 90 mmHg. This resulted in a total of 43,896 values for glucose uptake, lactate release, oxygen extraction ratio (OER), carbon dioxide (CO2) and bicarbonate (HCO3) production, jugular venous oxygen saturation (SjvO2), oxygen-glucose index (OGI), lactate-glucose index (LGI) and lactate-oxygen index (LOI). Arterial blood glucose concentration-dependent influence was determined retrospectively by assessing changes in these parameters within pre-defined blood glucose clusters, ranging from less than 4 to more than 9 mmol/l. RESULTS: Arterial blood glucose significantly influenced signs of cerebral metabolism reflected by increased cerebral glucose uptake, decreased cerebral lactate production, reduced oxygen consumption, negative LGI and decreased cerebral CO2/HCO3 production at arterial blood glucose levels above 6 to 7 mmol/l compared with lower arterial blood glucose concentrations. At blood glucose levels more than 8 mmol/l signs of increased anaerobic glycolysis (OGI less than 6) supervened. CONCLUSIONS: Maintaining arterial blood glucose levels between 6 and 8 mmol/l appears superior compared with lower and higher blood glucose concentrations in terms of stabilised cerebral metabolism. It appears that arterial blood glucose values below 6 and above 8 mmol/l should be avoided. Prospective analysis is required to determine the optimal arterial blood glucose target in patients suffering from severe TBI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Recent literature demonstrates hyperglycemia to be common in patients with trauma and associated with poor outcome in patients with traumatic brain injury and critically ill patients. The goal of this study was to analyze the impact of admission blood glucose on the outcome of surviving patients with multiple injuries. METHODS: Patients' charts (age >16) admitted to the emergency room of the University Hospital of Berne, Switzerland, between January 1, 2002, and December 31, 2004, with an Injury Severity Score >or=17 and more than one severely injured organ system were reviewed retrospectively. Outcome measurements included morbidity, intensive care unit, and hospital length of stay. RESULTS: The inclusion criteria were met by 555 patients, of which 108 (19.5%) patients died. After multiple regression analysis, admission blood glucose proved to be an independent predictor of posttraumatic morbidity (p < 0.0001), intensive care unit, and hospital length of stay (p < 0.0001), despite intensified insulin therapy on the intensive care unit. CONCLUSIONS: In this population of patients with multiple injuries, hyperglycemia on admission was strongly associated with increased morbidity, especially infections, prolonged intensive care unit, and hospital length of stay independent of injury severity, gender, age, and various biochemical parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The goal of this study was to analyse a possible association of admission blood glucose with hospital mortality of polytraumatised patients and to develop an outcome prediction model for this patient group. METHODS: The outcome of adult polytraumatised patients admitted to the University Hospital of Berne, Switzerland, between 2002 and 2004 with an ISS > or = 17, and more than one severely injured organ system was retrospectively analysed. RESULTS: The inclusion criteria were met by 555 patients, of which 108 (19.5%) died. Hyperglycaemia proved to be an independent predictor for hospital mortality (P < 0.0001), following multiple regression analysis. After inclusion of admission blood glucose, the calculated mortality prediction model performed better than currently described models (P < 0.0001, AUC 0.924). CONCLUSION: In this retrospective, single-centre study in polytraumatised patients, admission blood glucose proved to be an independent predictor of hospital mortality following regression analysis controlling for age, gender, injury severity and other laboratory parameters. A reliable admission blood glucose-based mortality prediction model for polytraumatised patients could be established. This observation may be helpful in improving the precision of future outcome prediction models for polytraumatised patients. These observations warrant further prospective evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starch is the major source of food glucose and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in alpha-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal alpha-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of (13)C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced alpha-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal alpha-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes is associated with abnormalities of the growth hormone (GH)-IGF-I axis. Such abnormalities include decreased circulating levels of IGF-I. We studied the effects of IGF-I therapy (40 microg x kg(-1) x day(-1)) on protein and glucose metabolism in adults with type 1 diabetes in a randomized placebo-controlled trial. A total of 12 subjects participated, and each subject was studied at baseline and after 7 days of treatment, both in the fasting state and during a hyperinsulinemic-euglycemic amino acid clamp. Protein and glucose metabolism were assessed using infusions of [1-13C]leucine and [6-6-2H2]glucose. IGF-I administration resulted in a 51% rise in circulating IGF-I levels (P < 0.005) and a 56% decrease in the mean overnight GH concentration (P < 0.05). After IGF-I treatment, a decrease in the overnight insulin requirement (0.26+/-0.07 vs. 0.17+/-0.06 U/kg, P < 0.05) and an increase in the glucose infusion requirement were observed during the hyperinsulinemic clamp (approximately 67%, P < 0.05). Basal glucose kinetics were unchanged, but an increase in insulin-stimulated peripheral glucose disposal was observed after IGF-I therapy (37+/-6 vs. 52+/-10 micromol x kg(-1) x min(-1), P < 0.05). IGF-I administration increased the basal metabolic clearance rate for leucine (approximately 28%, P < 0.05) and resulted in a net increase in leucine balance, both in the basal state and during the hyperinsulinemic amino acid clamp (-0.17+/-0.03 vs. -0.10+/-0.02, P < 0.01, and 0.25+/-0.08 vs. 0.40+/-0.06, P < 0.05, respectively). No changes in these variables were recorded in the subjects after administration of placebo. These findings demonstrated that IGF-I replacement resulted in significant alterations in glucose and protein metabolism in the basal and insulin-stimulated states. These effects were associated with increased insulin sensitivity, and they underline the major role of IGF-I in protein and glucose metabolism in type 1 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have suggested that oral or intravenous glucose enhances salt and water retention following a saline load. To test this, we studied the effects of an oral glucose load on urinary sodium and water excretion and serum biochemistry in response to a 2l intravenous infusion of 0.9% saline in normal subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To examine the degree to which use of β blockers, statins, and diuretics in patients with impaired glucose tolerance and other cardiovascular risk factors is associated with new onset diabetes. DESIGN Reanalysis of data from the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial. SETTING NAVIGATOR trial. PARTICIPANTS Patients who at baseline (enrolment) were treatment naïve to β blockers (n=5640), diuretics (n=6346), statins (n=6146), and calcium channel blockers (n=6294). Use of calcium channel blocker was used as a metabolically neutral control. MAIN OUTCOME MEASURES Development of new onset diabetes diagnosed by standard plasma glucose level in all participants and confirmed with glucose tolerance testing within 12 weeks after the increased glucose value was recorded. The relation between each treatment and new onset diabetes was evaluated using marginal structural models for causal inference, to account for time dependent confounding in treatment assignment. RESULTS During the median five years of follow-up, β blockers were started in 915 (16.2%) patients, diuretics in 1316 (20.7%), statins in 1353 (22.0%), and calcium channel blockers in 1171 (18.6%). After adjusting for baseline characteristics and time varying confounders, diuretics and statins were both associated with an increased risk of new onset diabetes (hazard ratio 1.23, 95% confidence interval 1.06 to 1.44, and 1.32, 1.14 to 1.48, respectively), whereas β blockers and calcium channel blockers were not associated with new onset diabetes (1.10, 0.92 to 1.31, and 0.95, 0.79 to 1.13, respectively). CONCLUSIONS Among people with impaired glucose tolerance and other cardiovascular risk factors and with serial glucose measurements, diuretics and statins were associated with an increased risk of new onset diabetes, whereas the effect of β blockers was non-significant.