124 resultados para Microbiota


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Respiratory tract infections and subsequent airway inflammation occur early in the life of infants with cystic fibrosis. However, detailed information about the microbial composition of the respiratory tract in infants with this disorder is scarce. We aimed to undertake longitudinal in-depth characterisation of the upper respiratory tract microbiota in infants with cystic fibrosis during the first year of life. METHODS We did this prospective cohort study at seven cystic fibrosis centres in Switzerland. Between Feb 1, 2011, and May 31, 2014, we enrolled 30 infants with a diagnosis of cystic fibrosis. Microbiota characterisation was done with 16S rRNA gene pyrosequencing and oligotyping of nasal swabs collected every 2 weeks from the infants with cystic fibrosis. We compared these data with data for an age-matched cohort of 47 healthy infants. We additionally investigated the effect of antibiotic treatment on the microbiota of infants with cystic fibrosis. Statistical methods included regression analyses with a multivariable multilevel linear model with random effects to correct for clustering on the individual level. FINDINGS We analysed 461 nasal swabs taken from the infants with cystic fibrosis; the cohort of healthy infants comprised 872 samples. The microbiota of infants with cystic fibrosis differed compositionally from that of healthy infants (p=0·001). This difference was also found in exclusively antibiotic-naive samples (p=0·001). The disordering was mainly, but not solely, due to an overall increase in the mean relative abundance of Staphylococcaceae in infants with cystic fibrosis compared with healthy infants (multivariable linear regression model stratified by age and adjusted for season; second month: coefficient 16·2 [95% CI 0·6-31·9]; p=0·04; third month: 17·9 [3·3-32·5]; p=0·02; fourth month: 21·1 [7·8-34·3]; p=0·002). Oligotyping analysis enabled differentiation between Staphylococcus aureus and coagulase-negative Staphylococci. Whereas the analysis showed a decrease in S aureus at and after antibiotic treatment, coagulase-negative Staphylococci increased. INTERPRETATION Our study describes compositional differences in the microbiota of infants with cystic fibrosis compared with healthy controls, and disordering of the microbiota on antibiotic administration. Besides S aureus, coagulase-negative Staphylococci also contributed to the disordering identified in these infants. These findings are clinically important in view of the crucial role that bacterial pathogens have in the disease progression of cystic fibrosis in early life. Our findings could be used to inform future studies of the effect of antibiotic treatment on the microbiota in infants with cystic fibrosis, and could assist in the prevention of early disease progression in infants with this disorder. FUNDING Swiss National Science Foundation, Fondation Botnar, the Swiss Society for Cystic Fibrosis, and the Swiss Lung Association Bern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Fixed orthodontic appliances can alter the subgingival microbiota. Our aim was to compare the subgingival microbiota and clinical parameters in adolescent subjects at sites of teeth treated with orthodontic bands with margins at (OBM) or below the gingival margin (OBSM), or with brackets (OBR). METHODS: Microbial samples were collected from 33 subjects (ages, 12-18 years) in treatment more than 6 months. The microbiota was assessed by the DNA-DNA checkerboard hybridization method. RESULTS: Bacterial samples were taken from 83 OBR,103 OBSM, and 54 OBM sites. Probing pocket depths differed by orthodontic type (P <0.001) with mean values of 2.9 mm (SD, 0.6) at OBSM sites, 2.5 mm (SD, 0.6) at OBM sites, and 2.3 mm (SD, 0.5) at OBR sites. Only Actinomyces israelii (P <0.001) and Actinomyces naeslundii (P <0.001) had higher levels at OBR sites, whereas Neisseria mucosa had higher levels at sites treated with OBSM or OBM (P <0.001). Aggregatibacter actinomycetemcomitans was found in 25% of sites independent of the appliance. CONCLUSIONS: Different types of orthodontic appliances cause minor differences in the subgingival microbiota (A israelii and A naeslundii) and higher levels at sites treated with orthodontic brackets. More sites with bleeding on probing and deeper pockets were found around orthodontic bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To investigate the short-term effects of nonsurgical therapy (scaling and root planing, SRP) on the subgingival microbiota in chronic (CP) and aggressive (AP) periodontal disease. METHOD AND MATERIALS: Ninety-seven CP and AP subjects underwent full-mouth SRP on 2 consecutive days. AP patients were randomly assigned to either receive systemic metronidazole plus amoxicillin (AP+AB) or were treated mechanically alone (AP). Pathogens were identified with 16S rRNA oligodeoxynucleotide probes and dot-blot hybridization before and at days 2, 3, 4, 7, 10, and 21 of healing. CP subjects were treated by scaling and root planing along with placebo tablets. RESULTS: Initially, AP cell counts were 69.9- (Porphyromonas gingivalis), 10.2- (Aggregatibacter actinomycetemcomitans), 5.7- (Tannerella forsythia), and 3.3-fold (Prevotella intermedia) enhanced compared to CP cell counts. Following SRP, immediate elimination occurred in single individuals of all three treatment groups at day 2. After SRP plus antibiotic therapy (AP+AB), the prevalence scores dropped beyond the levels of AP and CP, beginning at day 7, and remained low until day 21 (P =or< .05). Clinical healing statistically benefited from SRP with no differences among the three treatment groups. CONCLUSION: Nonsurgical therapy resulted in both a suppression and early elimination of single taxa immediately after completion of active treatment. Systemic antibiotics significantly accelerate the suppression of the periodontal microflora, but have limited effect on the elimination of target isolates during healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Peri-implantitis is common in patients with dental implants. We performed a single-blinded longitudinal randomized study to assess the effects of mechanical debridement on the peri-implant microbiota in peri-implantitis lesions. MATERIALS AND METHODS: An expanded checkerboard DNA-DNA hybridization assay encompassing 79 different microorganisms was used to study bacterial counts before and during 6 months following mechanical treatment of peri-implantitis in 17 cases treated with curettes and 14 cases treated with an ultrasonic device. Statistics included non-parametric tests and GLM multivariate analysis with p<0001 indicating significance and 80% power. RESULTS: At selected implant test sites, the most prevalent bacteria were: Fusobacterium nucleatum sp., Staphylococci sp., Aggregatibacter actinomycetemcomitans, Helicobacter pylori, and Tannerella forsythia. 30 min. after treatment with curettes, A. actinomycetemcomitans (serotype a), Lactobacillus acidophilus, Streptococcus anginosus, and Veillonella parvula were found at lower counts (p<0.001). No such differences were found for implants treated with the ultrasonic device. Inconsistent changes occurred following the first week. No microbiological differences between baseline and 6-month samples were found for any species or between treatment study methods in peri-implantitis. CONCLUSIONS: Both methods failed to eliminate or reduce bacterial counts in peri-implantitis. No group differences were found in the ability to reduce the microbiota in peri-implantitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofilms on oral piercings may serve as a bacterial reservoir and lead to systemic bacteremia or local transmission of pathogenic microbiota. The use of piercing materials which are less susceptible to biofilm accumulation could contribute to prevention of problems. The present study investigated whether there are microbiological differences in bacterial samples collected from tongue piercings made of different materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How a mutualistic relationship between the intestinal microbiota and intestinal T cell compartments is established is important, as a breakdown of intestinal T cell homeostasis may cause inflammatory bowel diseases. A number of studies have shown that different bacterial species modulate the intestinal CD4+ T cell compartment in different ways. We performed mechanistic in vivo studies that demonstrated the crucial requirement for regulatory T cells (Treg) and interleukin-10 (IL-10) in the induction of intestinal T cell homeostasis even following colonization with a completely benign microbiota. In the absence of a functional Treg response or IL-10 receptor signaling, the same bacteria that induced a Treg response in wild-type animals now induced T helper type 17 responses, without intestinal inflammation. Therefore, Treg, IL-10 and Th17 are crucial regulatory mechanisms in the intestine not only for controlling inflammation, but also to establish a continuum of CD4+ T cell homeostasis upon commensal colonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The review summarizes the recent progress that has been made in understanding the function of immunoglobulin A (IgA) in promoting a healthy mutualism with the commensal microbiota and protecting against pathogens. Although IgA is by far the most abundant antibody produced by mammals, direct experimental evidence for its function is still lacking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B cell activation factor of the TNF family (BAFF) is a potent B cell survival factor. BAFF overexpressing transgenic mice (BAFF-Tg mice) exhibit features of autoimmune disease, including B cell hyperplasia and hypergammaglobulinemia, and develop fatal nephritis with age. However, basal serum IgA levels are also elevated, suggesting that the pathology in these mice may be more complex than initially appreciated. Consistent with this, we demonstrate here that BAFF-Tg mice have mesangial deposits of IgA along with high circulating levels of polymeric IgA that is aberrantly glycosylated. Renal disease in BAFF-Tg mice was associated with IgA, because serum IgA was highly elevated in nephritic mice and BAFF-Tg mice with genetic deletion of IgA exhibited less renal pathology. The presence of commensal flora was essential for the elevated serum IgA phenotype, and, unexpectedly, commensal bacteria-reactive IgA antibodies were found in the blood. These data illustrate how excess B cell survival signaling perturbs the normal balance with the microbiota, leading to a breach in the normal mucosal-peripheral compartmentalization. Such breaches may predispose the nonmucosal system to certain immune diseases. Indeed, we found that a subset of patients with IgA nephropathy had elevated serum levels of a proliferation inducing ligand (APRIL), a cytokine related to BAFF. These parallels between BAFF-Tg mice and human IgA nephropathy may provide a new framework to explore connections between mucosal environments and renal pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammals harbor a dense commensal microbiota in the colon. Regulatory T (Treg) cells are known to limit microbe-triggered intestinal inflammation and the CD4+ T cell compartment is shaped by the presence of particular microbes or bacterial compounds. It is, however, difficult to distinguish whether these effects reflect true mutualistic immune adaptation to intestinal colonization or rather idiosyncratic immune responses. To investigate truly mutualistic CD4+ T cell adaptation, we used the altered Schaedler flora (ASF). Intestinal colonization resulted in activation and de novo generation of colonic Treg cells. Failure to activate Treg cells resulted in the induction of T helper 17 (Th17) and Th1 cell responses, which was reversed by wild-type Treg cells. Efficient Treg cell induction was also required to maintain intestinal homeostasis upon dextran sulfate sodium-mediated damage in the colon. Thus, microbiota colonization-induced Treg cell responses are a fundamental intrinsic mechanism to induce and maintain host-intestinal microbial T cell mutualism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human systemic antibody responses to commensal microbiota are not well characterised during health and disease. Of particular interest is the analysis of their potential modulation caused by chronic HIV-1 infection which is associated with sustained enteropathy and systemic B cell disturbances reflected by impaired B cell responses and chronic B cell hyperactivity. The mechanisms underlying B cell hyperactivation and the specificities of the resulting hypergammaglobulinaemia are only poorly understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large production of immunoglobulin (Ig)A is energetically costly. The fact that evolution retained this apparent luxury of intestinal class switch recombination to IgA within the human population strongly indicates that there must be a critical specific function of IgA for survival of the species. The function of IgA has been investigated in a series of different models that will be discussed here. While IgA has clear protective functions against toxins or in the context of intestinal viral infections, the function of IgA specific for non-pathogenic commensal bacteria remains unclear. In the context of the current literature we present a hypothesis where secretory IgA integrates as an additional layer of immune function into the continuum of intestinal CD4 T cell responses, to achieve a mutualistic relationship between the intestinal commensal microbiota and the host.