84 resultados para western blot

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichinellosis is a zoonotic disease in humans caused by Trichinella spp. According to international regulations and guidelines, serological surveillance can be used to demonstrate the absence of Trichinella spp. in a defined domestic pig population. Most enzyme-linked immunosorbent assay (ELISA) tests presently available do not yield 100% specificity, and therefore, a complementary test is needed to confirm the diagnosis of any initial ELISA seropositivity. The goal of the present study was to evaluate the sensitivity and specificity of a Western Blot assay based on somatic Trichinella spiralis muscle stage (L1) antigen using Bayesian modeling techniques. A total of 295 meat juice and serum samples from pigs negative for Trichinella larvae by artificial digestion, including 74 potentially cross-reactive sera of pigs with other nematode infections, and 93 meat juice samples from pigs infected with Trichinella larvae were included in the study. The diagnostic sensitivity and specificity of the Western Blot were ranged from 95.8% to 96.0% and from 99.5% to 99.6%, respectively. A sensitivity analysis showed that the model outcomes were hardly influenced by changes in the prior distributions, providing a high confidence in the outcomes of the models. This validation study demonstrated that the Western Blot is a suitable method to confirm samples that reacted positively in an initial ELISA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Left ventricular hypertrophy (LVH) is due to pressure overload or mechanical stretch and is thought to be associated with remodeling of gap-junctions. We investigated whether the expression of connexin 43 (Cx43) is altered in humans in response to different degrees of LVH. The expression of Cx43 was analyzed by quantitative polymerase chain reaction, Western blot analysis and immunohistochemistry on left ventricular biopsies from patients undergoing aortic or mitral valve replacement. Three groups were analyzed: patients with aortic stenosis with severe LVH (n=9) versus only mild LVH (n=7), and patients with LVH caused by mitral regurgitation (n=5). Cx43 mRNA expression and protein expression were similar in the three groups studied. Furthermore, immunohistochemistry revealed no change in Cx43 distribution. We can conclude that when compared with mild LVH or with LVH due to volume overload, severe LVH due to chronic pressure overload is not accompanied by detectable changes of Cx43 expression or spatial distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Endothelial Progenitor Cells (EPC) support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. OBJECTIVE: The aim of this study was to investigate the role of PDGF-BB and PDGFR in EPC-mediated angiogenesis of differentiated endothelial cells. METHODS AND RESULTS: Conditioned medium from human EPC (EPC-CM) cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01). EPC-CM increased proliferation (1.39-fold; P<0.001) and migration (2.13-fold; P<0.001) of isolated human umbilical vein endothelial cells (HUVEC), as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01). The capacity of EPC-CM to modulate the PDGFR expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFR (P<0.01). EPC-CM triggered a distinct up-regulation of PDGFR (2.5±0.5; P<0.05) and its phosphorylation (3.6±0.6; P<0.05) in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. CONCLUSION: These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFR , thereby turning the PDGF/PDGFR signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemokines have been proposed to contribute to tumour growth and metastatic spread of several cancer entities. Here, we examined the relative levels of CXCL12/CXCR4 in resection specimens from patients with different malignant and non-malignant colorectal diseases as well as colorectal liver metastases (CRLM). CXCL12/CXCR4 mRNA and protein expression profiles were assessed by quantitative real-time PCR, Western blot analysis, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry in resection specimens from patients with ulcerative colitis (UC; n = 15), colorectal adenoma (CRA; n = 15), colorectal adenocarcinoma (CRC; n = 47) and CRLM (n = 16). Corresponding non-affected tissues served as control. In contrast to UC tissues, CXCL12 showed a distinct down-regulation in CRA, CRC and CRLM specimens, whereas the corresponding receptor CXCR4 demonstrated a significant up-regulation in CRC and CRLM related to corresponding non-affected tissues (p < 0.05, respectively). Our results strongly suggest an association between CXCL12/CXCR4 expression and the induction of CRA, CRC and the development of CRLM. Therefore, CXCR4 may be a potential target for specific therapeutic interventions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical, postmortem and preclinical research strongly implicates dysregulation of glutamatergic neurotransmission in major depressive disorder (MDD). Recently, metabotropic glutamate receptors (mGluRs) have been proposed as attractive targets for the discovery of novel therapeutic approaches against depression. The aim of this study was to examine mGluR2/3 protein levels in the prefrontal cortex (PFC) from depressed subjects. In addition, to test whether antidepressants influence mGluR2/3 expression we also studied levels of mGluR2/3 in fluoxetine-treated monkeys. Postmortem human prefrontal samples containing Brodmann's area 10 (BA10) were obtained from 11 depressed and 11 psychiatrically healthy controls. Male rhesus monkeys were treated chronically with fluoxetine (dose escalated to 3mg/kg, p.o.; n=7) or placebo (n=6) for 39 weeks. The mGluR2/3 immunoreactivity was investigated using Western blot method. There was a robust (+67%) increase in the expression of the mGlu2/3 protein in the PFC of depressed subjects relative to healthy controls. The expression of mGlu2/3 was unchanged in the PFC of monkeys treated with fluoxetine. Our findings provide the first evidence that mGluR2/3 is elevated in the PFC in MDD. This observation is consistent with reports showing that mGluR2/3 antagonists exhibit antidepressant-like activity in animal models and demonstrates that these receptors are promising targets for the discovery of novel antidepressants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors. The sst2 receptor phosphorylation was evaluated by IHC and Western blot analysis with the new Ra-1124 antibody specific for the sst2 receptor phosphorylated at Ser341/343 in receptor-positive neuroendocrine tumors obtained from 10 octreotide-treated and 7 octreotide-naïve patients. The specificity, time course, and subcellular localization of sst2 receptor phosphorylation were examined in human embryo kinase-sst2 cell cultures by immunofluorescence and confocal microscopy. All seven octreotide-naïve tumors displayed exclusively nonphosphorylated cell surface sst2 expression. In contrast, 9 of the 10 octreotide-treated tumors contained phosphorylated sst2 that was predominantly internalized. Western blot analysis confirmed the IHC data. Octreotide treatment of human embryo kinase-sst2 cells in culture demonstrated that phosphorylated sst2 was localized at the plasma membrane after 10 seconds of stimulation and was subsequently internalized into endocytic vesicles. These data show, for the first time to our knowledge, that phosphorylated sst2 is present in most gastrointestinal neuroendocrine tumors from patients treated with octreotide but that a striking variability exists in the subcellular distribution of phosphorylated receptors among such tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bovine besnoitiosis, caused by the cyst-forming apicomplexan Besnoitia besnoiti, is commonly reported in some restricted regions of South-Western Europe, and in larger regions of Africa and Asia. This infection is thought to be transmitted by blood feeding insects and is responsible for major economic losses in cattle production. A recent emergence in Europe, notified in the Centre of France, Spain and Germany, has attracted more attention to this disease. Clinical signs could appear in some animals; however, many infected cattle remain asymptomatic or show scleral-conjunctival cysts (SCC) only. Recent development of serological methods allows carrying out seroepidemiological field studies. In this respect, a long-term investigation was performed in a dairy cattle farm localized in an enzootic area of besnoitiosis of South-western France between March 2008 and May 2009. The objective was to estimate the seasonal pattern of B. besnoiti infections based on the presence of SCC and serology (ELISA and Western blot). In parallel, an entomological survey was conducted to describe population dynamics of Stomoxys calcitrans and Tabanidae species. The seroprevalence determined by Western blot in a cohort of 57 animals continuously present during the whole survey increased from 30% in March 2008 to 89.5% in May 2009 and was always higher than the prevalence based on clinically assessed SCC. New positive B. besnoitia seroconversions occurred throughout the year with the highest number in spring. In addition, many seroconversions were reported in the two months before turn-out and could be associated with a high indoors activity of S. calcitrans during this period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trichinellosis is a food-borne zoonotic disease caused by the nematode Trichinella spp. Many omnivorous and carnivorous animal species can act as host for this parasite, including domestic pigs. To protect public health, it should be ensured that pork should not contain infective Trichinella larvae. Surveillance for Trichinella spp. can be done using direct (larval detection) and indirect (antibody detection) diagnostic techniques. The aim of this study was to demonstrate the absence of infection in Swiss domestic pigs. An ELISA was used as the initial screening test, and sera reacting in ELISA were further investigated using both a Western blot for serology and an artificial digestion test with 20 g of diaphragm tissue for larval detection. A total of 7412 adult pigs, 9973 finishing pigs and 2779 free-ranging pigs were tested. Samples from 17 (0.23%) adult pigs, 16 (0.16%) finishing pigs and nine (0.32%) free-ranging pigs were ELISA-positive, but all of these sera were subsequently negative by Western blot and by the artificial digestion method. Based on these findings, an absence of Trichinella infections in adult pigs (target prevalence 0.04%) and finishing pigs (target prevalence 0.03%) can be concluded. The results also demonstrated that the prevalence of Trichinella infections does not exceed 0.11% in free-ranging pigs, the group with the highest risk of exposure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated seasonal dermatitis of the horses associated with bites of Simulium (black fly) and Culicoides (midge) species. Although cross-reactivity between Simulium and Culicoides salivary gland extracts has been demonstrated, the molecular nature of the allergens responsible for the observed cross-reactivity remains to be elucidated. In this report we demonstrate for the first time in veterinary medicine that a homologous allergen, present in the salivary glands of both insects, shows extended IgE cross-reactivity in vitro and in vivo. The cDNA sequences coding for both antigen 5 like allergens termed Sim v 1 and Cul n 1 were amplified by PCR, subcloned in high level expression vectors, and produced as [His](6)-tagged proteins in Escherichia coli. The highly pure recombinant proteins were used to investigate the prevalence of sensitization in IBH-affected horses by ELISA and their cross-reactive nature by Western blot analyses, inhibition ELISA and intradermal skin tests (IDT). The prevalence of sensitization to Sim v 1 and Cul n 1 among 48 IBH-affected horses was 37% and 35%, respectively. In contrast, serum IgE levels to both allergens in 24 unaffected horses did not show any value above background. Both proteins strongly bound serum IgE from IBH-affected horses in Western blot analyses, demonstrating the allergenic nature of the recombinant proteins. Extended inhibition ELISA experiments clearly showed that Sim v 1 in fluid phase is able to strongly inhibit binding of serum IgE to solid phase coated Cul n 1 in a concentration dependent manner and vice versa. This crucial experiment shows that the allergens share common IgE-binding epitopes. IDT with Sim v 1 and Cul n 1 showed clear immediate and late phase reactions to the allergen challenges IBH-affected horses, whereas unaffected control horses do not develop relevant immediate hypersensitivity reactions. In some horses, however, mild late phase reactions were observed 4h post-challenge, a phenomenon reported to occur also in challenge experiments with Simulium and Culicoides crude extracts probably related to lipopolysaccaride contaminations which are also present in E. coli-expressed recombinant proteins. In conclusion our data demonstrate that IgE-mediated cross-reactivity to homologous allergens, a well-known clinically relevant phenomenon in human allergy, also occurs in veterinary allergy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.