17 resultados para species difference

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Environmental variation in signalling conditions affects animal communication traits, with possible consequences for sexual selection and reproductive isolation. Using spectrophotometry, we studied how male coloration within and between populations of two closely related Lake Victoria cichlid species (Pundamilia pundamilia and P. nyererei) covaries with water transparency. Focusing on coloration patches implicated in sexual selection, we predicted that in clear waters, with broad-spectrum light, (1) colours should become more saturated and (2) shift in hue away from the dominant ambient wavelengths, compared to more turbid waters. We found support for these predictions for the red and yellow coloration of P. nyererei but not the blue coloration of P. pundamilia. This may be explained by the species difference in depth distribution, which generates a steeper gradient in visual conditions for P. nyererei compared to P. pundamilia. Alternatively, the importance of male coloration in intraspecific sexual selection may differ between the species. We also found that anal fin spots, that is, the orange spots on male haplochromine anal fins that presumably mimic eggs, covaried with water transparency in a similar way for both species. This is in contrast to the other body regions studied and suggests that, while indeed functioning as signals, these spots may not play a role in species differentiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small mammals can impede tree regeneration by injuring seedlings and saplings in several ways. One fatal way is by severing their stems, but apparently this type of predation is not well-studied in tropical rain forest. Here, we report on the incidence of 'stem-cutting' to new, wild seedlings of two locally dominant, canopy tree species monitored in 40 paired forest understorey and gap-habitat areas in Korup, Cameroon following a 2007 masting event. In gap areas, which are required for the upward growth and sapling recruitment of both species, 137 seedlings of the long-lived, light-demanding, fast-growing large tropical tree (Microberlinia bisulcata) were highly susceptible to stem-cutting (83% of deaths) - it killed 39% of all seedlings over a c. 2-y period. In stark contrast, seedlings of the more shade-tolerant, slower-growing tree species (Tetraberlinia bifoliolata) were hardly attacked (4.3%). In the understorey, however, stem-cutting was virtually absent. Across the gap areas, the incidence of stem-cutting of M. bisulcata seedlings showed significant spatial variation that could not be explained significantly by either canopy openness or Janzen-Connell type effects (proximity and basal area of conspecific adult trees). To examine physical and chemical traits that might explain the species difference to being cut, bark and wood tissues were collected from a separate sample of seedlings in gaps (i.e. not monitored for stem-cutting). These analyses suggested that, compared with T. bifoliolata, the lower stem density, higher Mg and K and fatty acid concentrations in bark, and fewer phenolic and terpene compounds in M. bisulcata seedlings made them more palatable and attractive to small-mammal predators, likely rodents. We conclude that selective stem-cutting is a potent countervailing force to the current local canopy dominance of the grove-forming M. bisulcata by limiting the recruitment and abundance of its saplings. Given the ubiquity of gaps and ground-dwelling rodents in pantropical forests, it would be surprising if this form of lethal browsing was restricted to Korup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ketamine, an injectable anesthetic and analgesic consisting of a racemic mixture of S-and R-ketamine, is routinely used in veterinary and human medicine. Nevertheless, metabolism and pharmacokinetics of ketamine have not been characterized sufficiently in most animal species. An enantioselective CE assay for ketamine and its metabolites in microsomal preparations is described. Racemic ketamine was incubated with pooled microsomes from humans, horses and dogs over a 3 h time interval with frequent sample collection. CE data revealed that ketamine is metabolized enantioselectively to norketamine (NK), dehydronorketamine and three hydroxylated NK metabolites in all three species. The metabolic patterns formed differ in production rates of the metabolites and in stereoselectivity of the hydroxylated NK metabolites. In vitro pharmacokinetics of ketamine N-demethylation were established by incubating ten different concentrations of racemic ketamine and the single enantiomers of ketamine for 8 min and data modeling was based on Michaelis-Menten kinetics. These data revealed a reduced intrinsic clearance of the S-enantiomer in the racemic mixture compared with the single S-enantiomer in human microsomes, no difference in equine microsomes and the opposite effect in canine microsomes. The findings indicate species differences with possible relevance for the use of single S-ketamine versus racemic ketamine in the clinic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis of sympatric speciation by sexual selection has been contentious. Several recent theoretical models of sympatric speciation by disruptive sexual selection were tailored to apply to African cichlids. Most of this work concludes that the genetic architecture of female preference and male trait is a key determinant of the likelihood of disruptive sexual selection to result in speciation. We investigated the genetic architecture controlling male nuptial colouration in a sympatric sibling species pair of cichlid fish from Lake Victoria, which differ conspicuously in male colouration and female mating preferences for these. We estimated that the difference between the species in male nuptial red colouration is controlled by a minimum number of two to four genes with significant epistasis and dominance effects. Yellow colouration appears to be controlled by one gene with complete dominance. The two colours appear to be epistatically linked. Knowledge on how male colouration segregates in hybrid generations and on the number of genes controlling differences between species can help us assess whether assumptions made in simulation models of sympatric speciation by sexual selection are realistic. In the particular case of the two sister species that we studied a small number of genes causing major differences in male colouration may have facilitated the divergence in male colouration associated with speciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plates used for fracture fixation produce vascular injury to the underlying cortical bone. During the recovery of the blood supply, temporary osteoporosis is observed as a result of Haversian remodeling of the necrotic bone. This process temporarily reduces the strength of the bone. We tackled the postulate that quantitative differences exist between animal species, and in different bones within the same species, due to variations in the relative importance of the endosteal and periosteal blood supplies. Using implants scaled to the size of the bone, we found comparable cortical vascular damage in the sheep and in the dog, and in the tibia and femur of each animal. We observed a significant reduction in cortical vascular damage using plates that had a smaller contact area with the underlying bone. No significant difference in cortical vascular damage was noted in animals of different ages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 .In their colonized ranges, exotic plants may be released from some of the herbivores or pathogens of their home ranges but these can be replaced by novel enemies. It is of basic and practical interest to understand which characteristics of invaded communities control accumulation of the new pests. Key questions are whether enemy load on exotic species is smaller than on native competitors as suggested by the enemy release hypothesis (ERH) and whether this difference is most pronounced in resource-rich habitats as predicted by the resource–enemy release hypothesis (R-ERH). 2. In 72 populations of 12 exotic invasive species, we scored all visible above-ground damage morphotypes caused by herbivores and fungal pathogens. In addition, we quantified levels of leaf herbivory and fruit damage. We then assessed whether variation in damage diversity and levels was explained by habitat fertility, by relatedness between exotic species and the native community or rather by native species diversity. 3. In a second part of the study, we also tested the ERH and the R-ERH by comparing damage of plants in 28 pairs of co-occurring native and exotic populations, representing nine congeneric pairs of native and exotic species. 4. In the first part of the study, diversity of damage morphotypes and damage levels of exotic populations were greater in resource-rich habitats. Co-occurrence of closely related, native species in the community significantly increased the probability of fruit damage. Herbivory on exotics was less likely in communities with high phylogenetic diversity. 5. In the second part of the study, exotic and native congeneric populations incurred similar damage diversity and levels, irrespective of whether they co-occurred in nutrient-poor or nutrient-rich habitats. 9. Synthesis. We identified habitat productivity as a major community factor affecting accumulation of enemy damage by exotic populations. Similar damage levels in exotic and native congeneric populations, even in species pairs from fertile habitats, suggest that the enemy release hypothesis or the R-ERH cannot always explain the invasiveness of introduced species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis are oral pathogens from the family Bacteroidaceae, regularly isolated from cases of gingivitis and periodontitis. In this study, the phylogenetic variability of these three bacterial species was investigated by means of 16S rRNA (rrs) gene sequence comparisons of a set of epidemiologically and geographically diverse isolates. For each of the three species, the rrs gene sequences of 11 clinical isolates as well as the corresponding type strains was determined. Comparison of all rrs sequences obtained with those of closely related species revealed a clear clustering of species, with only a little intraspecies variability but a clear difference in the rrs gene with respect to the next related taxon. The results indicate that the three species form stable, homogeneous genetic groups, which favours an rrs-based species identification of these oral pathogens. This is especially useful given the 7% sequence divergence between Prevotella intermedia and Prevotella nigrescens, since phenotypic distinction between the two Prevotella species is inconsistent or involves techniques not applicable in routine identification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: There is increasing evidence suggesting that development of progressive canine cranial cruciate ligament (CCL) rupture involves a gradual degeneration of the CCL itself, initiated by a combination of factors, ranging from mechanical to biochemical. To date, knowledge is lacking to what extent cruciate disease results from abnormal biomechanics on a normal ligament or contrary how far preliminary alterations of the ligament due to biochemical factors provoke abnormal biomechanics. This study is focused on nitric oxide (NO), one of the potential biochemical factors. The NO-donor sodium nitroprusside (SNP) has been used to study NO-dependent cell death in canine cranial and caudal cruciate ligament cells and to characterize signaling mechanisms during NO-stimulation. RESULTS: Sodium nitroprusside increased apoptotic cell death dose- and time-dependently in cruciate ligamentocytes. Cells from the CCL were more susceptible to apoptosis than CaCL cells. Caspase-3 processing in response to SNP was not detected. Testing major upstream and signal transducing pathways, NO-induced cruciate ligament cell death seemed to be mediated on different levels. Specific inhibition of tyrosine kinase significantly decreased SNP-induced cell death. Mitogen activated protein kinase ERK1 and 2 are activated upon NO and provide anti-apoptotic signals whereas p38 kinase and protein kinase C are not involved. Moreover, data showed that the inhibition reactive oxygen species (ROS) significantly reduced the level of cruciate ligament cell death. CONCLUSIONS: Our data support the hypothesis that canine cruciate ligamentocytes, independently from their origin (CCL or CaCL) follow crucial signaling pathways involved in NO-induced cell death. However, the difference on susceptibility upon NO-mediated apoptosis seems to be dependent on other pathways than on these tested in the present study. In both, CCL and CaCL, the activation of the tyrosine kinase and the generation of ROS reveal important signaling pathways. In perspective, new efforts to prevent the development and progression of cruciate disease may include strategies aimed at reducing ROS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The acceptance of reserves as a useful management strategy relies on evidence of their effectiveness in preserving stocks of harvested species and conserving biodiversity. A history of ad hoc decisions in terrestrial and marine protected area planning has meant that many of these areas are contributing inefficiently to conservation goals. The conservation value of existing protected areas should be assessed when planning the placement of additional areas in a reserve network. 2. This study tested (1) the effectiveness of protection for intertidal molluscs of a marine reserve (Bouddi Marine Extension, NSW, Australia) established in 1971, and (2) the contribution of the protected area to the conservation of regional species, assemblages, and habitats. 3. The shell length and population density of one harvested (Cellana tramoserica), and three non-harvested species (Bembicium nanum, Morula marginalba, Nerita atramentosa) of intertidal molluscs were examined in the protected area and two reference locations over two seasons. 4. The heavily collected limpet C. tramoserica was significantly larger in the protected area and was the only species to exhibit a significant difference. No species significantly differed in population density between the protected area and reference locations. 5. Temporally replicated surveys of macro-molluscs at 21 locations over 75km of coastline identified that the existing protected area included 50% of species, two of five assemblage types and 19 of 20 intertidal rocky shore habitats surveyed in the study region. Reservation of a further three rocky reefs would protect a large proportion of species (71%), a representative of each assemblage and all habitat types. 6. Despite originally being selected in the absence of information on regional biodiversity, the protected area is today an effective starting point for expansion to a regional network of intertidal protected areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many parasites infect multiple host species. In coevolving host–parasite interactions, theory predicts that parasites should be adapted to locally common hosts, which could lead to regional shifts in host preferences. We studied the interaction between freshwater Gammarus (Crustacea, Amphipoda) and their acanthocephalan parasites using a large-scale field survey and experiments, combined with molecular identification of cryptic host and parasite species. Gammarus pulex is a common host for multiple species of Acanthocephala in Europe but, in Switzerland, is less common than two cryptic members of the Gammarus fossarum species complex (type A and type B). We found that natural populations of these cryptic species were frequently infected by Pomphorhynchus tereticollis and Polymorphus minutus. Four additional parasite species occurred only locally. Parasites were more common in G. fossarum type B than in type A. Infection experiments using several host and parasite sources confirmed consistently lower infection rates in G. pulex than in G. fossarum type A, suggesting a general difference in susceptibility between the two species. In conclusion, we could show that cryptic host species differ in their interactions with parasites, but that these differences were much less dramatic than differences between G. fossarum (type A) and G. pulex. Our data suggest that the acanthocephalans in Switzerland have adapted to the two most common Gammarus species in this region where host species frequencies differ from near-by regions in Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although accumulating evidence indicates that local intraspecific density-dependent effects are not as rare in species-rich communities as previously suspected, there are still very few detailed and systematic neighborhood analyses of species-rich communities. Here, we provide such an analysis with the overall goal of quantifying the relative importance of inter- and intraspecific interaction strength in a primary, lowland dipterocarp forest located at Danum, Sabah, Malaysia. Using data on 10 abundant overstory dipterocarp species from two 4-ha permanent plots, we evaluated the effects of neighbors on the absolute growth rate of focal trees (from 1986 to 1996) over increasing neighborhood radii (from 1 to 20 m) with multiple regressions. Only trees 10 cm to < 100 cm girth at breast height in 1986 were considered as focal trees. Among neighborhood models with one neighbor term, models including only conspecific larger trees performed best in five out of 10 species. Negative effects of conspecific larger neighbors were most apparent in large overstory species such as those of the genus Shorea. However, neighborhood models with separate terms and radii for heterospecific and conspecific neighbors accounted for more variability in absolute growth rates than did neighborhood models with one neighbor term. The conspecific term was significant for nine out of 10 species. Moreover, in five out of 10 species, trees without conspecific neighbors had significantly higher absolute growth rates than trees with conspecific neighbors. Averaged over the 10 species, trees without conspecific neighbors grew 32.4 cm(2) in basal area from 1986 to 1996, whereas trees with conspecific neighbors only grew 14.7 cm(2) in basal area, although there was no difference in initial basal area between trees in the two groups. Averaged across the six species of the genus Shorea, negative effects of conspecific larger trees were significantly stronger than for heterospecific larger neighbors. Thus, high local densities within neighborhoods of 20 m may lead to strong intraspecific negative and, hence, density-dependent, effects even in species rich communities with low overall densities at larger spatial scales. We conjecture that the strength of conspecific effects may be correlated with the degree of host specificity of ectomycorrhizae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sympatrically occurring bat species, the greater mouse-eared bat (Myotis myotis (Borkhausen, 1797)) and the lesser mouse-eared bat (Myotis blythii (Tomes, 1857)) (Chiroptera, Vespertillionidae), share numerous similarities in morphology, roosting behaviour, and echolocation and are often difficult to distinguish. However, despite these similarities, their foraging behaviour is noticeably different. Our aim was to examine the extent to which these different foraging strategies reflect morphological adaptation. We assessed whether the morphology of the wing, body, and tail differed between M. myotis and M. blythii. In addition, in a laboratory experiment involving an obstacle course, we compared differences in manoeuvrability by relating them to our morphological measurements. The two species differed in their overall size, wing-tip shape, and tail-to-body length ratio. The generally smaller sized M. blythii performed better in the obstacle course and was therefore considered to be more manoeuvrable. Although differences in wing-tip shape were observed, we found the most important characteristic affecting manoeuvrability in both species to be the tail-to-body length ratio. Additionally, when we compared two bats with injured wing membranes with unharmed bats of the same species, we found no difference in manoeuvrability, even when the wing shape was asymmetric. We therefore postulate that morphometric differences between the two species in their overall size and, more importantly, in their tail-to-body length ratio are the main physical characteristics providing proof of adaptation to different foraging and feeding strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ancient lakes are often unusually species rich, mostly as a result of radiation and species-flock formation having taken place in only one or a few of many taxa present. Understanding why some taxa radiate and others do not is at the heart of understanding biodiversity. In this chapter I discuss possible explanations for disproportionally large species numbers in some cichlid fish lineages in East African Great Lakes: the halochromine cichlid fishes in Lakes Victoria and Malawi. I show that speciation rates in this group are higher than in any other lacustrine fish radiation. Against this background, I review hypotheses put forward to explain diversity in cichlid species flocks. The evolution of species diversity requires three processes: speciation, ecological radiation and anatomical diversification, and it is wrong to consider hypotheses that are relevant to different processes as alternatives to each other. The African cichlid species flocks show unusually high ecological species packing in several phylogenetic groups and unusually high speciation rates in haplochromines. Therefore, it maybe concluded that at least two evolutionary models are required to explain the difference between cichlid diversity and other fish diversity in East African Lakes: one for speciation in haplochromines and one for coexistence. Subsequently I review work on speciation in haplochromines, and in particular studies aimed at testing the hypothesis of speciation by sexual selection. Haplochromines have a polygynous mating system, conducive to sexual selection, but other polygynous cichlids are not particularly species rich. This suggests that more than just strong sexual selection is required to explain haplochromine species richness. Recent palaeoecological evidence undermines the previously popular hypotheses that explained the species richness of Lake Victoria in terms of speciation under varying natural or sexual selection regimes in satellite lakes or in isolated lake basins. I summarize experimental and comparative studies, which provide evidence for two mechanisms of sympatric speciation by disruptive sexual selection on polymorphic coloration. Such modes of speciation may explain (i) the high speciation rates in colour polymorphic lineages of haplochromine cichlids under conditions where colour variation is visible in clear water, and (ii) in combination with factors that affect population survival, the unusual species richness in haplochromine species flocks. I argue that sexual selection, if disruptive, can accelerate the pace of adaptive radiation because the resultant genetic population fragmentation allows a much increased rate of differential response to disruptive natural selection. Hence, the ecological pattern of diversity resembles that produced by disruptive natural selection, with the difference that disruptive sexual selection continues to cause (gross) speciation even after niche space is saturated. This may explain the unusually high numbers of very closely related and ecologically similar species in haplochromine species flocks. The role of disruptive sexual selection is twofold: it not only causes speciation, but also maintains reproductive isolation in sympatry between species that have evolved in sympatry or allopatry. Therefore, the maintenance of diversity in species flocks that originated through sexual selection depends on the persistence of the selection regime within the environmental signal space under which that diversity evolved.