11 resultados para process measurement
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.
Resumo:
OBJECTIVE: The objective of the study was to evaluate tissue reactions such as bone genesis, cartilage genesis and graft materials in the early phase of lumbar intertransverse process fusion in a rabbit model using computed tomography (CT) imaging with CT intensity (Hounsfield units) measurement, and to compare these data with histological results. MATERIALS AND METHODS: Lumbar intertransverse process fusion was performed on 18 rabbits. Four graft materials were used: autograft bone (n = 3); collagen membrane soaked with recombinant human bone morphogenetic protein-2 (rhBMP-2) (n = 5); granular calcium phosphate (n = 5); and granular calcium phosphate coated with rhBMP-2 (n = 5). All rabbits were euthanized 3 weeks post-operatively and lumbar spines were removed for CT imaging and histological examination. RESULTS: Computed tomography imaging demonstrated that each fusion mass component had the appropriate CT intensity range. CT also showed the different distributions and intensities of bone genesis in the fusion masses between the groups. Each component of tissue reactions was identified successfully on CT images using the CT intensity difference. Using CT color mapping, these observations could be easily visualized, and the results correlated well with histological findings. CONCLUSIONS: The use of CT intensity is an effective approach for observing and comparing early tissue reactions such as newly synthesized bone, newly synthesized cartilage, and graft materials after lumbar intertransverse process fusion in a rabbit model.
Resumo:
BACKGROUND: Bleeding is a frequent complication during surgery. The intraoperative administration of blood products, including packed red blood cells, platelets and fresh frozen plasma (FFP), is often live saving. Complications of blood transfusions contribute considerably to perioperative costs and blood product resources are limited. Consequently, strategies to optimize the decision to transfuse are needed. Bleeding during surgery is a dynamic process and may result in major blood loss and coagulopathy due to dilution and consumption. The indication for transfusion should be based on reliable coagulation studies. While hemoglobin levels and platelet counts are available within 15 minutes, standard coagulation studies require one hour. Therefore, the decision to administer FFP has to be made in the absence of any data. Point of care testing of prothrombin time ensures that one major parameter of coagulation is available in the operation theatre within minutes. It is fast, easy to perform, inexpensive and may enable physicians to rationally determine the need for FFP. METHODS/DESIGN: The objective of the POC-OP trial is to determine the effectiveness of point of care prothrombin time testing to reduce the administration of FFP. It is a patient and assessor blind, single center randomized controlled parallel group trial in 220 patients aged between 18 and 90 years undergoing major surgery (any type, except cardiac surgery and liver transplantation) with an estimated blood loss during surgery exceeding 20% of the calculated total blood volume or a requirement of FFP according to the judgment of the physicians in charge. Patients are randomized to usual care plus point of care prothrombin time testing or usual care alone without point of care testing. The primary outcome is the relative risk to receive any FFP perioperatively. The inclusion of 110 patients per group will yield more than 80% power to detect a clinically relevant relative risk of 0.60 to receive FFP of the experimental as compared with the control group. DISCUSSION: Point of care prothrombin time testing in the operation theatre may reduce the administration of FFP considerably, which in turn may decrease costs and complications usually associated with the administration of blood products. TRIAL REGISTRATION: NCT00656396.
Resumo:
Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.
Resumo:
his Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4.7 fb−1 of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at s√=7 TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of αℓP, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, αℓPCPC=−0.035±0.014(stat)±0.037(syst) and αℓPCPV=0.020±0.016(stat)+0.013−0.017(syst), are in good agreement with the standard model prediction of negligible top quark polarization.
Resumo:
This article develops an integrative framework of the concept of perceived brand authenticity (PBA) and sheds light on PBA’s (1) measurement, (2) drivers, (3) consequences, as well as (4) an underlying process of its effects and (5) boundary conditions. A multi-phase scale development process resulted in a 15-item PBA scale to measure its four dimensions of credibility, integrity, symbolism, and continuity. PBA is influenced by indexical, existential, and iconic cues, whereby the latter’s influence is moderated by consumers’ level of marketing skepticism. Results also suggest that PBA drives brand choice likelihood through self-congruence for consumers high in self-authenticity.
Resumo:
Although brand authenticity is gaining increasing interest in consumer behavior research and managerial practice, literature on its measurement and contribution to branding theory is still limited. This article develops an integrative framework of the concept of brand authenticity and reports the development and validation of a scale measuring consumers' perceived brand authenticity (PBA). A multi-phase scale development process resulted in a 15-item PBA scale measuring four dimensions: credibility, integrity, symbolism, and continuity. This scale is reliable across different brands and cultural contexts. We find that brand authenticity perceptions are influenced by indexical, existential, and iconic cues, whereby some of the latters' influence is moderated by consumers' level of marketing skepticism. Results also suggest that PBA increases emotional brand attachment and word-of-mouth, and that it drives brand choice likelihood through self-congruence for consumers high in self-authenticity.
Resumo:
The differential cross section for the process Z/√ → ℓℓ (ℓ = e, μ) as a function of dilepton invariant mass is measured in pp collisions at ps = 7TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb−1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb−1 of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leadingorder QCD calculations, unless the latter are matched to a parton shower calculation.
Resumo:
Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of p s = 8TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5ơ level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the Sherpa and Powheg event generators.
Resumo:
The process pp ! W±J/ provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb−1 of p s =7TeV pp collisions at the LHC, the first observation is made of the production of W± +prompt J/ events in hadronic collisions, using W± → μѵμ and Jψ → μ+μ−. A yield of 27.4+7.5−6.5 W± + prompt J/ψ events is observed, with a statistical significance of 5.1ơ. The production rate as a ratio to the inclusive W± boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.