30 resultados para plasmons, dark field microscopy, gold particles, fluorescence enhancement

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of nanoparticles (NPs) in medicine and biology has increased rapidly in recent years. Gold NPs have advantageous properties such as chemical stability, high electron density and affinity to biomolecules, making them very promising candidates as drug carriers and diagnostic tools. However, diverse studies on the toxicity of gold NPs have reported contradictory results. To address this issue, a triple cell co-culture model simulating the alveolar lung epithelium was used and exposed at the air-liquid interface. The cell cultures were exposed to characterized aerosols with 15 nm gold particles (61 ng Au/cm2 and 561 ng Au/cm2 deposition) and incubated for 4 h and 24 h. Experiments were repeated six times. The mRNA induction of pro-inflammatory (TNFalpha, IL-8, iNOS) and oxidative stress markers (HO-1, SOD2) was measured, as well as protein induction of pro- and anti-inflammatory cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, TNFalpha, INFgamma). A pre-stimulation with lipopolysaccharide (LPS) was performed to further study the effects of particles under inflammatory conditions. Particle deposition and particle uptake by cells were analyzed by transmission electron microscopy and design-based stereology. A homogeneous deposition was revealed, and particles were found to enter all cell types. No mRNA induction due to particles was observed for all markers. The cell culture system was sensitive to LPS but gold particles did not cause any synergistic or suppressive effects. With this experimental setup, reflecting the physiological conditions more precisely, no adverse effects from gold NPs were observed. However, chronic studies under in vivo conditions are needed to entirely exclude adverse effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

So far, little is known about the interaction of nanoparticles with lung cells, the entering of nanoparticles, and their transport through the blood stream to other organs. The entering and localization of different nanoparticles consisting of differing materials and of different charges were studied in human red blood cells. As these cells do not have any phagocytic receptors on their surface, and no actinmyosin system, we chose them as a model for nonphagocytic cells to study how nanoparticles penetrate cell membranes. We combined different microscopic techniques to visualize fine and nanoparticles in red blood cells: (I) fluorescent particles were analyzed by laser scanning microscopy combined with digital image restoration, (II) gold particles were analyzed by conventional transmission electron microscopy and energy filtering transmission electron microscopy, and (III) titanium dioxide particles were analyzed by energy filtering transmission electron microscopy. By using these differing microscopic techniques we were able to visualize and detect particles < or = 0.2 microm and nanoparticles in red blood cells. We found that the surface charge and the material of the particles did not influence their entering. These results suggest that particles may penetrate the red blood cell membrane by a still unknown mechanism different from phagocytosis and endocytosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform. Two commonly used microscopy techniques (indirect fluorescence and scanning electron microscopy) showed their straightforwardness and versatility for the nanoparticle binding investigations regardless the composition of the investigated nanoobjects. Moreover most of the research laboratories and centers are equipped with fluorescence microscopes, so indirect fluorescence using Quantum dots can be used for any active targeting nanocarriers (polymers, ceramics, metals, etc.). The second technique based on backscattered electron is not only limited to gold nanoparticles but also suits for any study of metallic nanoparticles as the electronic density difference between the nanoparticles and binding surface stays high enough. Optoacoustic imaging was finally performed on a 3D cellular model to assess and prove the concept of the developed platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New theories on the regeneration of ischemic vasculature have emerged indicating a pivotal role of adult stem cells. The aim of this study was to investigate homing and hemodynamic effects of circulating bone marrow-derived mesenchymal stem cells (MSCs) in a critically ischemic murine skin flap model. Bone marrow-derived mesenchymal stem cells (Lin(-)CD105(+)) were harvested from GFP(+)-donor mice and transferred to wildtype C57BL/6 mice. Animals receiving GFP(+)-fibroblasts served as a control group. Laser scanning confocal microscopy and intravital fluorescence microscopy were used for morphological analysis, monitoring and quantitative assessment of the stem cell homing and microhemodynamics over two weeks. Immunohistochemical staining was performed for GFP, eNOS, iNOS, VEGF. Tissue viability was analyzed by TUNEL-assay. We were able to visualize perivascular homing of MSCs in vivo. After 4 days, MSCs aligned along the vascular wall without undergoing endothelial or smooth muscle cell differentiation during the observation period. The gradual increase in arterial vascular resistance observed in the control group was abolished after MSC administration (P<0.01). At capillary level, a strong angiogenic response was found from day 7 onwards. Functional capillary density was raised in the MSC group to 197% compared to 132% in the control group (P<0.01). Paracrine expression of VEGF and iNOS, but not eNOS could be shown in the MSC group but not in the controls. In conclusion, we demonstrated that circulating bone marrow-derived MSCs home to perivascular sites in critically ischemic tissue, exhibits paracrine function and augment microhemodynamics. These effects were mediated through arteriogenesis and angiogenesis, which contributed to vascular regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deproteinized bovine bone mineral (DBBM) (Bio-Oss®, Geistlich-Pharma, Wohlhusen, Switzerland) is widely used as a bone substitute for the preservation or augmentation of bone volume. After implantation near native bone, new bone may form around the DBBM particles. Since DBBM is very resistant to resorption, it will hardly ever be replaced by bone and, therefore, the mechanical stability largely depends on the extent of bridging between the newly formed bone and the DBBM particles. The molecular factors responsible for the deposition of new bone to the DBBM particles have not been determined. The aim of this study was, therefore, to test the hypothesis that DBBM implanted near bone take up bone-related matrix proteins that are involved in cell-matrix interactions. Cylindrical biopsies harvested from tooth extraction sites filled with DBBM particles were fixed in aldehydes, decalcified, and embedded in LR White resin. Thin sections were incubated with antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two bone proteins involved in cell attachment, signaling, and mineralization. High-resolution immunogold labeling was used to examine protein distribution. BSP and OPN were immunodetected in all DBBM particles and yielded an identical distribution pattern. Most gold particles were found over the peripheral DBBM matrix, although some peripheral regions lacked immunolabeling. The bulk of the interior DBBM portion was mainly free of labeling with the exception of the peripheral matrix of some osteocyte lacunae and canaliculi. It is concluded that DBBM selectively takes up at least BSP and OPN after its implantation at a bone site. BSP and OPN or other molecules accommodating in DBBM may modulate events associated with cell attachment and differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine whether variability in the shape of dendritic spines affects protein movement within the plasma membrane. Using a combination of confocal microscopy and the fluorescence loss in photobleaching technique in living hippocampal CA1 pyramidal neurons expressing membrane-linked GFP, we observed a clear correlation between spine shape parameters and the diffusion and compartmentalization of membrane-associated proteins. The kinetics of membrane-linked GFP exchange between the dendritic shaft and the spine head compartment were slower in dendritic spines with long necks and/or large heads than in those with short necks and/or small heads. Furthermore, when the spine area was reduced by eliciting epileptiform activity, the kinetics of protein exchange between the spine compartments exhibited a concomitant decrease. As synaptic plasticity is considered to involve the dynamic flux by lateral diffusion of membrane-bound proteins into and out of the synapse, our data suggest that spine shape represents an important parameter in the susceptibility of synapses to undergo plastic change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Eosinophilic esophagitis (EoE) exhibits esophageal dysfunction owing to an eosinophil-predominant inflammation. Activated eosinophils generate eosinophil extracellular traps (EETs) able to kill bacteria. There is evidence of an impaired barrier function in EoE that might allow pathogens to invade the esophagus. This study aimed to investigate the presence and distribution of EETs in esophageal tissues from EoE patients and their association with possible epithelial barrier defects. METHODS Anonymized tissue samples from 18 patients with active EoE were analyzed. The presence of DNA nets associated with eosinophil granule proteins forming EETs and the expression of filaggrin, the protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI), antimicrobial peptides, and cytokines were evaluated by confocal microscopy following immune fluorescence staining techniques. RESULTS Eosinophil extracellular trap formation occurred frequently and was detected in all EoE samples correlating with the numbers of infiltrating eosinophils. While the expression of both filaggrin and LEKTI was reduced, epithelial antimicrobial peptides (human beta-defensin-2, human beta-defensin-3, cathelicidin LL-37, psoriasin) and cytokines (TSLP, IL-25, IL-32, IL-33) were elevated in EoE as compared to normal esophageal tissues. There was a significant correlation between EET formation and TSLP expression (P = 0.02) as well as psoriasin expression (P = 0.016). On the other hand, a significant negative correlation was found between EET formation and LEKTI expression (P = 0.016). CONCLUSION Active EoE exhibits the presence of EETs. Indications of epithelial barrier defects in association with epithelial cytokines are also present which may have contributed to the activation of eosinophils. The formation of EETs could serve as a firewall against the invasion of pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescent proteins have proven to be important tools for in vitro live imaging of parasites and for imaging of parasites within the living host by intravital microscopy. We observed that a red fluorescent transgenic malaria parasite of rodents, Plasmodium berghei-RedStar, is suitable for in vitro live imaging experiments but bleaches rapidly upon illumination in intravital imaging experiments using mice. We have therefore generated two additional transgenic parasite lines expressing the novel red fluorescent proteins tdTomato and mCherry, which have been reported to be much more photostable than first- and second-generation red fluorescent proteins including RedStar. We have compared all three red fluorescent parasite lines for their use in in vitro live and intravital imaging of P. berghei blood and liver parasite stages, using both confocal and wide-field microscopy. While tdTomato bleached almost as rapidly as RedStar, mCherry showed improved photostability and was bright in all experiments performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.