4 resultados para neurones

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clinical signs, pathological and laboratory findings of cattle suffering from a tremorgenic syndrome are described. Animals on a farm with a total of 22 cows, 18 heifers and 9 calves were fed mouldy grass and spent malt-grain silage. Five heifers were affected with muscular tremor, hyperexcitability and hypersensitivity. They were ataxic or in sternal recumbency, while their appetite remained normal. Haematology and blood chemistry in two heifers as well as cerebrospinal fluid from one sick animal were unremarkable. The pathological examination of one animal brought no macroscopic changes to light. Histological examination, however, revealed the degeneration of motor neurones in the midbrain, brain stem and spinal cord. Analysis of a silage sample provided evidence of the presence of Aspergillus clavatus, a mould capable of producing neurotoxic tremorgenic mycotoxins. Epidemiology, clinical findings, pathology and microbiological examination suggest that the five cattle were suffering from neuromycotoxicosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To investigate the expression of E-cadherin, a major host cell receptor for Listeria monocytogenes (LM) internalin A, in the ruminant nervous system and its putative role in brainstem invasion and intracerebral spread of LM in the natural disease. METHODS: Immunohistochemistry and double immunofluorescence was performed on brains, cranial nerves and ganglia of ruminants with and without natural LM rhombencephalitis using antibodies against E-cadherin, protein gene product 9.5, myelin-associated glycoprotein and LM. RESULTS: In the ruminant brain, E-cadherin is expressed in choroid plexus epithelium, meningothelium and restricted neuropil areas of the medulla, but not in the endothelium. In cranial nerves and ganglia, E-cadherin is expressed in satellite cells and myelinating Schwann cells. Expression does not differ between ruminants with or without listeriosis and does not overlap with the presence of microabscesses in the medulla. LM is observed in phagocytes, axons, Schwann cells, satellite cells and ganglionic neurones. CONCLUSION: Our results support the view that the specific ligand-receptor interaction between LM and host E-cadherin is involved in the neuropathogenesis of ruminant listeriosis. They suggest that oral epithelium and Schwann cells expressing E-cadherin provide a port of entry for free bacteria offering a site of primary intracellular replication, from where the bacterium may invade the axonal compartment by cell-to-cell spread. As E-cadherin expression in the ruminant central nervous system is weak, only very locally restricted and not related to the presence of microabscesses, it is likely that further intracerebral spread is independent of E-cadherin and relies primarily on axonal spread.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To compare the effects of intravenous methylprednisolone (IVMP) in patients with relapsing-remitting (RR-MS), secondary progressive (SP-MS), and primary progressive multiple sclerosis (PP-MS). METHODS: Clinical and neurophysiological follow up was undertaken in 24 RR-MS, eight SP-MS, and nine PP-MS patients receiving Solu-Medrol 500 mg/d over five days for exacerbations involving the motor system. Motor evoked potentials (MEPs) were used to measure central motor conduction time (CMCT) and the triple stimulation technique (TST) was applied to assess conduction deficits. The TST allows accurate quantification of the number of conducting central motor neurones, expressed by the TST amplitude ratio. RESULTS: There was a significant increase in TST amplitude ratio in RR-MS (p<0.001) and SP-MS patients (p<0.02) at day 5, paralleling an increase in muscle force. TST amplitude ratio and muscle force remained stable at two months. In PP-MS, TST amplitude ratio and muscle force did not change. CMCT did not change significantly in any of the three groups. CONCLUSIONS: In RR-MS and SP-MS, IVMP is followed by a prompt increase in conducting central motor neurones paralleled by improvement in muscle force, which most probably reflects partial resolution of central conduction block. The lack of similar clinical and neurophysiological changes in PP-MS corroborates previous clinical reports on limited IVMP efficacy in this patient group and points to pathophysiological differences underlying exacerbations in PP-MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desferrioxamine inhibits cortical necrosis in neonatal rats with experimental pneumococcal meningitis, suggesting that iron-induced oxidative damage might be responsible for neuronal damage. We therefore examined the spatial and temporal profile of changes in cortical iron and iron homeostatic proteins during pneumococcal meningitis. Infection was associated with a steady and global increase of non-haem iron in the cortex, particularly in neuronal cell bodies of layer II and V, and in capillary endothelial cells. The non-haem iron increase was associated with induction of haem oxygenase (HO)-1 in neurones, microglia and capillary endothelial cells, whereas HO-2 levels remained unchanged, suggesting that the non-haem iron increase might be the result of HO-1-mediated haem degradation. Indeed, treatment with the haem oxygenase inhibitor tin protoporphyrin (which completely blocked the accumulation of bilirubin detected in HO-1-positive cells) completely prevented the infection-associated non-haem iron increase. The same cells also displayed markedly increased ferritin staining, the increase of which occurred independently of HO activity. At the same time, no increase in DNA/RNA oxidation was observed in infected animals (as assessed by in situ detection of 8-hydroxy[deoxy]guanosine), strongly suggesting that ferritin up-regulation protected the brain from iron-induced oxidative damage. Thus, although pneumococcal meningitis leads to an increase of cortical non-haem iron, protective mechanisms up-regulated in parallel prevent iron-induced oxidative damage. Cortical damage does not appear to be a direct consequence of increased iron, therefore.