16 resultados para iron oxide nanocubes

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental tissue fusion benefits from the selective heating of superparamagnetic iron oxide nanoparticles (SPIONs) under high frequency irradiation. However, the metabolic pathways of SPIONs for tissue fusion remain unknown. Hence, the goal of this in vivo study was to analyze the distribution of SPIONs in different organs by means of magnetic resonance imaging (MRI) and histological analysis after a SPION-containing patch implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic iron oxide nanoparticles have found application as contrast agents for magnetic resonance imaging (MRI) and as switchable drug delivery vehicles. Their stabilization as colloidal carriers remains a challenge. The potential of poly(ethylene imine)-g-poly(ethylene glycol) (PEGPEI) as stabilizer for iron oxide (γ-Fe₂O₃) nanoparticles was studied in comparison to branched poly(ethylene imine) (PEI). Carrier systems consisting of γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were prepared and characterized regarding their physicochemical properties including magnetic resonance relaxometry. Colloidal stability of the formulations was tested in several media and cytotoxic effects in adenocarcinomic epithelial cells were investigated. Synthesized γ-Fe₂O₃ cores showed superparamagnetism and high degree of crystallinity. Diameters of polymer-coated nanoparticles γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were found to be 38.7 ± 1.0 nm and 40.4 ± 1.6 nm, respectively. No aggregation tendency was observable for γ-Fe₂O₃-PEGPEI over 12 h even in high ionic strength media. Furthermore, IC₅₀ values were significantly increased by more than 10-fold when compared to γ-Fe₂O₃-PEI. Formulations exhibited r₂ relaxivities of high numerical value, namely around 160 mM⁻¹ s⁻¹. In summary, novel carrier systems composed of γ-Fe₂O₃-PEGPEI meet key quality requirements rendering them promising for biomedical applications, e.g. as MRI contrast agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymph node metastases influence prognosis and outcome in patients with bladder and prostate cancer. Cross sectional imaging criteria are limited in detecting metastases in normal sized lymph nodes. This prospective study assessed the diagnostic accuracy of ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) for the detection of metastases in normal sized lymph nodes using extended pelvic lymph node dissection (ePLND) and histopathology as the reference standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Lymph node staging of bladder or prostate cancer using conventional imaging is limited. Newer approaches such as ultrasmall superparamagnetic particles of iron oxide (USPIO) and diffusion-weighted magnetic resonance imaging (DW-MRI) have inconsistent diagnostic accuracy and are difficult to interpret. OBJECTIVE: To assess whether combined USPIO and DW-MRI (USPIO-DW-MRI) improves staging of normal-sized lymph nodes in bladder and/or prostate cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one consecutive patients with bladder and/or prostate cancer were enrolled between May and October 2008. One patient was excluded secondary to bone metastases detected on DW-MRI with subsequent abstention from surgery. INTERVENTION: Patients preoperatively underwent 3-T MRI before and after administration of lymphotropic USPIO using conventional MRI sequences combined with DW-MRI. Surgery consisted of extended pelvic lymphadenectomy and resection of primary tumors. MEASUREMENTS: Diagnostic accuracies of the new combined USPIO-DW-MRI approach compared with the "classic" reading method evaluating USPIO images without and with DW-MRI versus histopathology were evaluated. Duration of the two reading methods was noted for each patient. RESULTS AND LIMITATIONS: Diagnostic accuracy (90% per patient or per pelvic side) was comparable for the classic and the USPIO-DW-MRI reading method, while time of analysis with 80 min (range 45-180 min) for the classic and 13 min (range 5-90 min) for the USPIO-DW-MRI method was significantly shorter (p<0.0001). Interobserver agreement (three blinded readers) was high with a kappa value of 0.75 and 0.84, respectively. Histopathological analysis showed metastases in 26 of 802 analyzed lymph nodes (3.2%). Of these, 24 nodes (92%) were correctly diagnosed as positive on USPIO-DW-MRI. In two patients, one micrometastasis each (1.0x0.2 mm; 0.7x0.4 mm) was missed in all imaging studies. CONCLUSIONS: USPIO-DW-MRI is a fast and accurate method for detecting pelvic lymph node metastases, even in normal-sized nodes of bladder or prostate cancer patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Conventional cross-sectional imaging with computed tomography and magnetic resonance imaging (MRI) has limited accuracy for lymph node (LN) staging in bladder and prostate cancer patients. Objective To prospectively assess the diagnostic accuracy of combined ultrasmall superparamagnetic particles of iron oxide (USPIO) MRI and diffusion-weighted (DW) MRI in staging of normal-sized pelvic LNs in bladder and/or prostate cancer patients. Design, setting, and participants Examinations with 3-Tesla MRI 24–36 h after administration of USPIO using conventional MRI sequences combined with DW-MRI (USPIO-DW-MRI) were performed in 75 patients with clinically localised bladder and/or prostate cancer staged previously as N0 by conventional cross-sectional imaging. Combined USPIO-DW-MRI findings were analysed by three independent readers and correlated with histopathologic LN findings after extended pelvic LN dissection (PLND) and resection of primary tumours. Outcome measurements and statistical analysis Sensitivity and specificity for LN status of combined USPIO-DW-MRI versus histopathologic findings were evaluated per patient (primary end point) and per pelvic side (secondary end point). Time required for combined USPIO-DW-MRI reading was assessed. Results and limitations At histopathologic analysis, 2993 LNs (median: 39 LNs; range: 17–68 LNs per patient) with 54 LN metastases (1.8%) were found in 20 of 75 (27%) patients. Per-patient sensitivity and specificity for detection of LN metastases by the three readers ranged from 65% to 75% and 93% to 96%, respectively; sensitivity and specificity per pelvic side ranged from 58% to 67% and 94% to 97%, respectively. Median reading time for the combined USPIO-DW-MRI images was 9 min (range: 3–26 min). A potential limitation is the absence of a node-to-node correlation of combined USPIO-DW-MRI and histopathologic analysis. Conclusions Combined USPIO-DW-MRI improves detection of metastases in normal-sized pelvic LNs of bladder and/or prostate cancer patients in a short reading time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4+ T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4+ T cells, and induce cytokines. The decreased antigen processing and CD4+ T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrasmall superparamagnetic iron oxide (USPIO) particles are promising contrast media, especially for molecular and cellular imaging besides lymph node staging owing to their superior NMR efficacy, macrophage uptake and lymphotropic properties. The goal of the present prospective clinical work was to validate quantification of signal decrease on high-resolution T(2)-weighted MR sequences before and 24-36 h after USPIO administration for accurate differentiation between benign and malignant normal-sized pelvic lymph nodes. Fifty-eight patients with bladder or prostate cancer were examined on a 3 T MR unit and their respective lymph node signal intensities (SI), signal-to-noise (SNR) and contrast-to-noise (CNR) were determined on pre- and post-contrast 3D T(2)-weighted turbo spin echo (TSE) images. Based on histology and/or localization, USPIO-uptake-related SI/SNR decrease of benign vs malignant and pelvic vs inguinal lymph nodes was compared. Out of 2182 resected lymph nodes 366 were selected for MRI post-processing. Benign pelvic lymph nodes showed a significantly higher SI/SNR decrease compared with malignant nodes (p < 0.0001). Inguinal lymph nodes in comparison to pelvic lymph nodes presented a reduced SI/SNR decrease (p < 0.0001). CNR did not differ significantly between benign and malignant lymph nodes. The receiver operating curve analysis yielded an area under the curve of 0.96, and the point with optimal accuracy was found at a threshold value of 13.5% SNR decrease. Overlap of SI and SNR changes between benign and malignant lymph nodes were attributed to partial voluming, lipomatosis, histiocytosis or focal lymphoreticular hyperplasia. USPIO-enhanced MRI improves the diagnostic ability of lymph node staging in normal-sized lymph nodes, although some overlap of SI/SNR-changes remained. Quantification of USPIO-dependent SNR decrease will enable the validation of this promising technique with the final goal of improving and individualizing patient care.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle-cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE To assess ultrasmall superparamagnetic iron oxide particles (USPIO) -enhanced MR imaging for the differentiation of malignant from benign, inflammatory lesions. MATERIALS AND METHODS In this study, approved by the local animal care committee, VX2 carcinoma and intramuscular abscesses were implanted into the hind thighs of New Zealand White rabbits. MR imaging was performed pre contrast and serially for 24 h after the injection of USPIO. MR findings were compared with histopathologic results based on Prussian blue stains for the presence of iron. RESULTS Twenty-four hours after the Ferumoxtran-injection, no changes were observed in VX2 carcinomas, whereas a mean reduction of the contrast-to-noise ratio (CNR) of approximately 90% was noticed in abscesses as well as in necrotic tumors. On histopathologic examination, abscess and necrotic parts of the tumor were found to include iron-containing monocytes demonstrating that the reduction in CNR was caused by USPIO-tagged monocytes. CONCLUSION Our results prove the ability of USPIO-enhanced MRI to differentiate benign, inflammatory from malignant lesions.