3 resultados para halogenated hydrocarbon

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the suitability of single and multiple cell type cultures as model systems to characterise cellular kinetics of highly lipophilic compounds with potential ecotoxicological impact. Confluent mono-layers of human skin fibroblasts, rat astrocytoma C6 cells, non-differentiated and differentiated mouse 3T3 cells were kept in culture medium supplemented with 10% foetal calf serum. For competitive uptake experiments up to four different cell types, grown on glass sectors, were exposed for 3h to (14)C-labelled model compounds, dissolved either in organic solvents or incorporated into unilamellar lecithin liposomes. Bromo-, or chloro-benzenes, decabromodiphenylether (DBP), and dichlorodiphenyl ethylene (DDE) were tested in rather high concentration of 20 microM. Cellular toxicity was low. Compound levels were related to protein, DNA, and triglyceride contents. Cellular uptake was fast and dependent on physico-chemical properties of the compounds (lipophilicity, molecular size), formulation, and cell type. Mono-halogenated benzenes showed low and similar uptake levels (=low accumulation compounds). DBP and DDE showed much higher cellular accumulations (=high accumulation compounds) except for DBP in 3T3 cells. Uptake from liposomal formulations was mostly higher than if compounds were dissolved in organic solvents. The extent of uptake correlated with the cellular content of triglycerides, except for DBP. Uptake competition between different cell types was studied in a sectorial multi-cell culture model. For low accumulation compounds negligible differences were found among C6 cells and fibroblasts. Uptake of DDE was slightly and that of DBP highly increased in fibroblasts. Well-defined cell culture systems, especially the sectorial model, are appropriate to screen for bioaccumulation and cytotoxicity of (unknown) chemical entities in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many endocrine-disrupting chemicals act via estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). To investigate the interference between ER and AhR, we studied the effects of 17beta-estradiol (E2) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of zebra fish cyp19a (zfcyp19a) and cyp19b (zfcyp19b) genes, encoding aromatase P450, an important steroidogenic enzyme. In vivo (mRNA quantification in exposed zebra fish larvae) and in vitro (activity of zfcyp19-luciferase reporter genes in cell cultures in response to chemicals and zebra fish transcription factors) assays were used. None of the treatments affected zfcyp19a, excluding the slight upregulation by E2 observed in vitro. Strong upregulation of zfcyp19b by E2 in both assays was downregulated by TCDD. This effect could be rescued by the addition of an AhR antagonist. Antiestrogenic effect of TCDD on the zfcyp19b expression in the brain was also observed on the protein level, assessed by immunohistochemistry. TCDD alone did not affect zfcyp19b expression in vivo or promoter activity in the presence of zebra fish AhR2 and AhR nuclear translocator 2b (ARNT2b) in vitro. However, in the presence of zebra fish ERalpha, AhR2, and ARNT2b, TCDD led to a slight upregulation of promoter activity, which was eliminated by either an ER or AhR antagonist. Studies with mutated reporter gene constructs indicated that both mechanisms of TCDD action in vitro were independent of dioxin-responsive elements (DREs) predicted in the promoter. This study shows the usefulness of in vivo zebra fish larvae and in vitro zfcyp19b reporter gene assays for evaluation of estrogenic chemical actions, provides data on the functionality of DREs predicted in zfcyp19 promoters and shows the effects of cross talk between ER and AhR on zfcyp19b expression. The antiestrogenic effect of TCDD demonstrated raises further concerns about the neuroendocrine effects of AhR ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1×1013-1×10161×1013-1×1016 1 MeV 16O+ ions cm−2) through aperture masks under high vacuum and a low pressure (<10−3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.