28 resultados para glucocorticoid receptor

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-alpha production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin A is a nutrient with remarkable effects on adipose tissue and skeletal muscles, and plays a role in controlling energy balance. Retinoic acid (RA), the carboxylic form of vitamin A, has been associated with improved glucose tolerance and insulin sensitivity. In contrast, elevated glucocorticoids have been implicated in the development of insulin resistance and impaired glucose tolerance. Here, we investigated whether RA might counteract glucocorticoid effects in skeletal muscle cells by lowering 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local glucocorticoid activation and/or activation of glucocorticoid receptor (GR). We found a dose-dependent down-regulation of 11beta-HSD1 mRNA expression and activity upon incubation of fully differentiated mouse C2C12 myotubes with RA. In addition, RA inhibited GR transactivation by an 11beta-HSD1-independent mechanism. The presence of RA during myogenesis did not prevent myotube formation but resulted in relatively glucocorticoid-resistant myotubes, exhibiting very low 11beta-HSD1 expression and GR activity. The use of selective retinoic acid receptor (RAR) and retinoid X receptor ligands provided evidence that these effects were mediated through RARgamma. Importantly, short hairpin RNA against RARgamma abolished the effect of RA on 11beta-HSD1 and GR. In conclusion, we provide evidence for an important role of RA in the control of glucocorticoid activity during myogenesis and in myotubes. Disturbances of the nutrient and hormonal regulation of glucocorticoid action in skeletal muscles might be relevant for metabolic diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent epidemiological studies demonstrated a beneficial effect of coffee consumption for the prevention of type 2 diabetes, however, the underlying mechanisms remained unknown. We demonstrate that coffee extract, corresponding to an Italian Espresso, inhibits recombinant and endogenous 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity. The inhibitory component is heat-stable with considerable polarity. Coffee extract blocked 11beta-HSD1-dependent cortisol formation, prevented the subsequent nuclear translocation of the glucocorticoid receptor and abolished glucocorticoid-induced expression of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase. We suggest that at least part of the anti-diabetic effects of coffee consumption is due to inhibition of 11beta-HSD1-dependent glucocorticoid reactivation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hypothalamo-pituitary-adrenal axis shows functional changes in alcoholics, with raised glucocorticoid release during alcohol intake and during the initial phase of alcohol withdrawal. Raised glucocorticoid concentrations are known to cause neuronal damage after withdrawal from chronic alcohol consumption and in other conditions. The hypothesis for these studies was that chronic alcohol treatment would have differential effects on corticosterone concentrations in plasma and in brain regions. Effects of chronic alcohol and withdrawal on regional brain corticosterone concentrations were examined using a range of standard chronic alcohol treatments in two strains of mice and in rats. Corticosterone was measured by radioimmunoassay and the identity of the corticosterone extracted from brain was verified by high performance liquid chromatography and mass spectrometry. Withdrawal from long term (3 weeks to 8 months) alcohol consumption induced prolonged increases in glucocorticoid concentrations in specific regions of rodent brain, while plasma concentrations remained unchanged. This effect was seen after alcohol administration via drinking fluid or by liquid diet, in both mice and rats and in both genders. Shorter alcohol treatments did not show the selective effect on brain glucocorticoid levels. During the alcohol consumption the regional brain corticosterone concentrations paralleled the plasma concentrations. Type II glucocorticoid receptor availability in prefrontal cortex was decreased after withdrawal from chronic alcohol consumption and nuclear localization of glucocorticoid receptors was increased, a pattern that would be predicted from enhanced glucocorticoid type II receptor activation. This novel observation of prolonged selective increases in brain glucocorticoid activity could explain important consequences of long term alcohol consumption, including memory loss, dependence and lack of hypothalamo-pituitary responsiveness. Local changes in brain glucocorticoid levels may also need to be considered in the genesis of other mental disorders and could form a potential new therapeutic target.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In early pregnancy, abortion can be induced by blocking the actions of progesterone receptors (PR). However, the PR antagonist, mifepristone (RU38486), is rather unselective in clinical use because it also cross-reacts with other nuclear receptors. Since the ligand-binding domain of human progesterone receptor (hPR) and androgen receptor (hAR) share 54% identity, we hypothesized that derivatives of dihydrotestosterone (DHT), the cognate ligand for hAR, might also regulate the hPR. Compounds designed and synthesized in our laboratory were investigated for their affinities for hPRB, hAR, glucocorticoid receptor (hGRα) and mineralocorticoid receptor (hMR), using whole cell receptor competitive binding assays. Agonistic and antagonistic activities were characterized by reporter assays. Nuclear translocation was monitored using cherry-hPRB and GFP-hAR chimeric receptors. Cytostatic properties and apoptosis were tested on breast cancer cells (MCF7, T-47D). One compound presented a favorable profile with an apparent neutral hPRB antagonistic function, a selective cherry-hPRB nuclear translocation and a cytostatic effect. 3D models of human PR and AR with this ligand were constructed to investigate the molecular basis of selectivity. Our data suggest that these novel DHT-derivatives provide suitable templates for the development of new selective steroidal hPR antagonists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During pregnancy, trophoblasts grow to adapt the feto-maternal unit to fetal requirements. Aldosterone and cortisol levels increase, the latter being inactivated by a healthy placenta. By contrast, preeclamptic placental growth is reduced while aldosterone levels are low and placental cortisol tissue levels are high due to improper deactivation. Aldosterone acts as a growth factor in many tissues, whereas cortisol inhibits growth. We hypothesized that in preeclampsia low aldosterone and enhanced cortisol availability might mutually affect placental growth and function. Proliferation of cultured human trophoblasts was time- and dose-dependently increased with aldosterone (P < 0.04 to P < 0.0001) and inhibited by spironolactone and glucocorticoids (P < 0.01). Mineralo- and glucocorticoid receptor expression and activation upon agonist stimulation was verified by visualization of nuclear translocation of the receptors. Functional aldosterone deficiency simulated in pregnant mice by spironolactone treatment (15 μg/g body weight/day) led to a reduced fetal umbilical blood flow (P < 0.05). In rat (P < 0.05; R(2) = 0.2055) and human (X(2) = 3.85; P = 0.0249) pregnancy, placental size was positively related to plasma aldosterone. Autocrine production of these steroid hormones was excluded functionally and via the absence of specific enzymatic transcripts for CYP11B2 and CYP11B1. In conclusion, activation of mineralocorticoid receptors by maternal aldosterone appears to be required for trophoblast growth and a normal feto-placental function. Thus, low aldosterone levels and enhanced cortisol availability may be one explanation for the reduced placental size in preeclampsia and related disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cortisol availability is controlled by 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which inactivates cortisol in cortisone, unable to bind to the glucocorticoid receptor. The 11beta-HSD2 enzyme activity limits either intracellular cortisol concentrations or within the uteroplacental compartment the transfer of cortisol into the fetal circulation. Mechanisms, by which 11beta-HSD2 activity is controlled, include transcriptional control, posttranscriptional modifications of 11beta-HSD2 transcript half-life, epigenetic regulation via methylation of genomic DNA and direct inhibition of enzymatic activity. The 11beta-HSD2 expression and activity is reduced in preeclampsia and the enzyme activity correlates with factors associated with increased vasoconstriction, such as an increased angiotensin II receptor subtype 1 expression, and notably fetal growth. Numerous signals such as proinflammatory cytokines known to be present and/or elevated in preeclampsia regulate 11beta-HSD2 activity. Shallow trophoblast invasion with the resulting hypoxemia seems to critically reduce available 11beta-HSD2 activity. A positive feedback exists as activated glucocorticoid receptors do enhance 11beta-HSD2 mRNA transcription and mRNA stability. No data are currently available on pregnancy and either epigenetic or direct effects on the activity of the translated enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elevated glucocorticoids are a key risk factor for metabolic diseases, and the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) represents a promising therapeutic target. We measured the potential of six traditional antidiabetic medicinal plants extracts to inhibit 11beta-HSD1 activity and glucocorticoid receptor (GR) activation in transfected HEK-293 cells. Leave extracts of Eriobotrya japonica preferentially inhibited 11beta-HSD1 over 11beta-HSD2. Extracts of roasted but not native coffee beans preferentially inhibited 11beta-HSD1 over 11beta-HSD2, emphasizing the importance of sample preparation. Thus, natural compounds inhibiting 11beta-HSD1 may contribute to the antidiabetic effect of the investigated plant extracts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.