3 resultados para foam cells

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Perilipin-1 surrounds lipid droplets in both adipocytes and in atheroma plaque foam cells and controls access of lipases to the lipid core. In hemodialysis (HD) patients, dyslipidemia, malnutrition, inflammation and atherosclerosis are common. Thirty-six HD patients and 28 healthy volunteers were enrolled into the study. Ten HD patients suffered from coronary heart disease (CHD). Perilipin-1, triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), body mass index, albumin, geriatric nutritional risk index, normalized protein catabolic rate, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured. Perilipin-1 did not differ between HD patients and healthy volunteers. IL-6 and TNF-α were higher in HD patients. The evaluated nutritional markers and the markers of inflammation did not differ between HD patients with high perilipin-1 levels and HD patients with low perilipin-1 levels. Regarding the lipid profile, only HDL-C differed between HD patients with high perilipin-1 levels and HD patients with low perilipin-1 levels, and it was higher in the first subgroup. Perilipin-1 was significantly higher in HD patients without CHD. Perilipin-1 is detectable in the serum of HD patients and it is associated with increased HDL-C and decreased incidence of CHD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerous studies suggest that Vitamin E has a preventive role in atherosclerosis, although the mechanism of action still remains unclear. CD36, a member of the scavenger receptor family is centrally involved in the uptake of oxidized low density proteins (oxLDLs) from bloodstream. During the atherosclerotic process, the lipid cargo of oxLDL accumulates in macrophages and smooth muscle cells, inducing their pathological conversion to foam cells. In the present study, we investigate the role of Vitamin E on CD36 expression in an in vivo model. Atherosclerosis was induced by a 2% cholesterol containing Vitamin E poor diet. Three groups of six rabbits each were studied. The first group (control) was fed on Vitamin E poor diet. The second group was fed with Vitamin E poor diet containing 2% cholesterol and the rabbits in the third group were fed with Vitamin E poor diet containing 2% cholesterol and received injections of 50 mg/kg of Vitamin E i.m. After 4 weeks, aortas were removed and analysed by light microscopy for atherosclerotic lesions. Aortic samples were analysed for CD36 mRNA expression. The aortas of cholesterol-fed rabbits showed typical atherosclerotic lesions, detected by macroscopic and microscopic examination, and exhibited an increase in CD36 mRNA expression. Vitamin E fully prevented cholesterol induced atherosclerotic lesions and the induction of CD36 mRNA expression. The effects observed at the level of CD36 scavenger receptor expression in vivo suggest an involvement of reduced foam cell formation in the protective effect of Vitamin E against atherosclerosis.