42 resultados para core coding region

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The murine gap junction protein connexin43 (Cx43) is expressed in blood vessels, with vastly different contribution by endothelial and smooth muscle cells. We have used the Cre recombinase under control of TIE2 transcriptional elements to inactivate a floxed Cx43 gene specifically in endothelial cells. Cre-mediated deletion led to replacement of the Cx43 coding region by a lacZ reporter gene. This allowed us to monitor the extent of deletion and to visualize the endothelial expression pattern of Cx43. We found widespread endothelial expression of the Cx43 gene during embryonic development, which became restricted largely to capillaries and small vessels in all adult organs examined. Mice lacking Cx43 in endothelium did not exhibit altered blood pressure, in contrast to mice deficient in Cx40. Our results show that lacZ activation after deletion of the target gene allows us to determine the extent of cell type-specific deletion after phenotypical investigation of the same animal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases that can occur spontaneously or can be caused by infection or mutations within the prion protein gene PRNP. Nonsynonymous DNA polymorphisms within the PRNP gene have been shown to influence susceptibility/resistance to infection in sheep and humans. Analysis of DNA polymorphisms within the core promoter region of the PRNP gene in four major German bovine breeds resulted in the identification of both SNPs and insertion/deletion (indel) polymorphisms. Comparative genotyping of both controls and animals that tested positive for bovine spongiform encephalopathy (BSE) revealed a significantly different distribution of two indel polymorphisms and two SNPs within Braunvieh animals, suggesting an association of these polymorphisms with BSE susceptibility. The functional relevance of these polymorphisms was analyzed using reporter gene constructs in neuronal cells. A specific haplotype near exon 1 was identified that exhibited a significantly lower expression level. Genotyping of nine polymorphisms within the promoter region and haplotype calculation revealed that the haplotype associated with the lowest expression level was underrepresented in the BSE group of all breeds compared to control animals, indicating a correlation of reduced PRNP expression and increased resistance to BSE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite over 30 years of research, the molecular mechanisms of nonsense-mediated mRNA decay (NMD) are still not well understood. NMD appears to exist in most eukaryotes and is intensively studied in S. cerevisiae, C. elegans, D. melanogaster and in mammalian cells. Current evidence suggests that the core of NMD – involving UPF1, UPF2 and UPF3 – is evolutionarily conserved, but that different species may have evolved slightly different ways to identify target mRNAs for NMD and to degrade them. Our lab has shown that the exon junction complex (EJC) is not absolutely required for NMD in human cells (Bühler et al., NSMB 2006) and that it is neither restricted to CBP80-bound mRNAs as classical models claim (Rufener & Mühlemann, NSMB 2013). Together with the finding that long 3’ UTRs often are an NMD-inducing feature (Eberle et al, PLoS Biol 2008; Yepiskoposyan et al., RNA 2011), our data is consistent with much of the data from other species and hence has led to a “unified” working model for NMD (Stalder & Mühlemann, Trends Cell Biol 2008; Schweingruber et al., Biochim Biophys Acta 2013). Our recent iCLIP experiments with endogenous UPF1 indicate that UPF1 binds mRNAs indiscriminately with respect to being an NMD target or not before they engage with ribosomes (Zünd et al., NSMB 2013). After onset of translation, UPF1 is cleared from the coding region but remains bound to the 3’ UTR of mRNAs. Why this 3’ UTR-associated in some cases induces NMD and in others not is currently being investigated and not yet understood. Following assembly of a phospho-UPF1-containing NMD complex, decay adaptors (SMG5, SMG7, PNRC2) and/or the endonuclease SMG6 are recruited. While the latter cleaves the mRNA in the vicinity of the termination codon, the former proteins induce deadenylation, decapping and exonucleolytic degradation of the mRNA. In my talk, I will give an overview about the latest developments in NMD – with a focus on our own work – and try to integrate the bits and pieces into a somewhat coherent working model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In idiopathic portal hypertension (IPH) typical vascular lesions are present in the branches of the portal vein or in the perisinusoidal area of the liver. Similar histological alterations have been reported in the pulmonary vasculature of patients with idiopathic pulmonary artery hypertension (IPAH). As IPAH is associated with mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, the aim of this study was to investigate whether this association might also be found in patients with IPH. Twenty-three samples belonging to 21 unrelated caucasian patients with IPH followed in the hepatic haemodynamic laboratory of the Hospital Clinic in Barcelona were included in the study. All patients were studied for the entire open reading frame and splice site of the BMPR2 gene by direct sequencing and multiple ligation probe amplification (MLPA) in order to detect large deletions/duplications. None of the 23 patients had pulmonary artery hypertension. Four patients presented one single nucleotide polymorphism (SNP) in intron 5, four patients had a SNP in exon 12 and a SNP in exon 1 was found in two cases. Two patients had both intron 5 and exon 12 polymorphisms. All SNPs were previously described. Except for these three SNPs, neither mutations nor rearrangements have been identified in the BMPR2 gene in this population. We did not detect mutations or rearrangements in the coding region of the BMPR2 gene in our patients with IPH. These findings suggest that, in contrast to IPAH, mutations in BMPR2 are not involved in the pathogenesis of IPH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The identification of associations between interleukin-28B (IL-28B) variants and the spontaneous clearance of hepatitis C virus (HCV) raises the issues of causality and the net contribution of host genetics to the trait. To estimate more precisely the net effect of IL-28B genetic variation on HCV clearance, we optimized genotyping and compared the host contributions in multiple- and single-source cohorts to control for viral and demographic effects. The analysis included individuals with chronic or spontaneously cleared HCV infections from a multiple-source cohort (n = 389) and a single-source cohort (n = 71). We performed detailed genotyping in the coding region of IL-28B and searched for copy number variations to identify the genetic variant or haplotype carrying the strongest association with viral clearance. This analysis was used to compare the effects of IL-28B variation in the two cohorts. Haplotypes characterized by carriage of the major alleles at IL-28B single-nucleotide polymorphisms (SNPs) were highly overrepresented in individuals with spontaneous clearance versus those with chronic HCV infections (66.1% versus 38.6%, P = 6 × 10(-9) ). The odds ratios for clearance were 2.1 [95% confidence interval (CI) = 1.6-3.0] and 3.9 (95% CI = 1.5-10.2) in the multiple- and single-source cohorts, respectively. Protective haplotypes were in perfect linkage (r(2) = 1.0) with a nonsynonymous coding variant (rs8103142). Copy number variants were not detected. CONCLUSION: We identified IL-28B haplotypes highly predictive of spontaneous HCV clearance. The high linkage disequilibrium between IL-28B SNPs indicates that association studies need to be complemented by functional experiments to identify single causal variants. The point estimate for the genetic effect was higher in the single-source cohort, which was used to effectively control for viral diversity, sex, and coinfections and, therefore, offered a precise estimate of the net host genetic contribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tyrolean Grey cattle represent a local breed with a population size of approximately 5000 registered cows. In 2003, a previously unknown neurological disorder was recognized in Tyrolean Grey cattle. The clinical signs of the disorder are similar to those of bovine progressive degenerative myeloencephalopathy (weaver syndrome) in Brown Swiss cattle but occur much earlier in life. The neuropathological investigation of an affected calf showed axonal degeneration in the central nervous system (CNS) and femoral nerve. The pedigrees of the affected calves suggested a monogenic autosomal recessive inheritance. We localized the responsible mutation to a 1.9 Mb interval on chromosome 16 by genome-wide association and haplotype mapping. The MFN2 gene located in this interval encodes mitofusin 2, a mitochondrial membrane protein. A heritable human axonal neuropathy, Charcot-Marie-Tooth disease-2A2 (CMT2A2), is caused by MFN2 mutations. Therefore, we considered MFN2 a positional and functional candidate gene and performed mutation analysis in affected and control Tyrolean Grey cattle. We did not find any non-synonymous variants. However, we identified a perfectly associated silent SNP in the coding region of exon 20 of the MFN2 gene. This SNP is located within a putative exonic splice enhancer (ESE) and the variant allele leads to partial retention of the entire intron 19 and a premature stop codon in the aberrant MFN2 transcript. Thus we have identified a highly unusual splicing defect, where an exonic single base exchange leads to the retention of the preceding intron. This splicing defect represents a potential explanation for the observed degenerative axonopathy. Marker assisted selection can now be used to eliminate degenerative axonopathy from Tyrolean Grey cattle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ALX4 (aristaless-like homeobox 4) gene encodes a paired-type homeodomain transcriptional activator and plays a major role in anterior-posterior pattern formation during limb development. Here, the cloning, genomic structure and expression of the bovine ortholog of the ALX4 gene are reported. The bovine ALX4 gene consists of four exons and is located on BTA15q28-->q29 in a region syntenic to HSA11p11.2. The transcribed ALX4 mRNA encodes a 397-amino-acid protein showing a paired-type homeodomain and a C-terminal stretch of amino acids known as the OAR- or aristaless domain. The predicted protein shares 92.5% identity to human and mouse ALX4 proteins and all three species share almost complete identity in the conserved domains. ALX4 expression was detected by reverse transcriptase polymerase chain reaction in bovine fetal limb bones. The ALX4 gene was evaluated as a candidate gene for bovine syndactyly which has been mapped on the telomeric region of cattle chromosome 15. Sequencing of the four exons with flanking sequences of the bovine ALX4 gene from a panel of 14 affected animals belonging to German Holstein, German Fleckvieh and crossbreds, and 27 unaffected individuals from German Holstein revealed five silent SNPs within the coding region out of eleven SNPs in total. Four SNPs were polymorphic in the affected animals, but in comparison to the genotyped unaffected individuals the genotype distribution showed no evidence for an association to the phenotype. Therefore our data indicate that the ALX4 gene can probably be excluded as candidate gene for bovine syndactyly in the examined animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The neuronal ceroid lipofuscinoses (NCL) are a heterogenous group of inherited progressive neurodegenerative diseases in different mammalian species. Tibetan Terrier and Polish Owczarek Nizinny (PON) dogs show rare late-onset NCL variants with autosomal recessive inheritance, which can not be explained by mutations of known human NCL genes. These dog breeds represent animal models for human late-onset NCL. In mice the chloride channel 3 gene (Clcn3) encoding an intracellular chloride channel was described to cause a phenotype similar to NCL. RESULTS: Two full-length cDNA splice variants of the canine CLCN3 gene are reported. The current canine whole genome sequence assembly was used for gene structure analyses and revealed 13 coding CLCN3 exons in 52 kb of genomic sequence. Sequence analysis of the coding exons and flanking intron regions of CLCN3 using six NCL-affected Tibetan terrier dogs and an NCL-affected Polish Owczarek Nizinny (PON) dog, as well as eight healthy Tibetan terrier dogs revealed 13 SNPs. No consistent CLCN3 haplotype was associated with NCL. CONCLUSION: For the examined animals we excluded the complete coding region and adjacent intronic regions of canine CLCN3 to harbor disease-causing mutations. Therefore it seems to be unlikely that a mutation in this gene is responsible for the late-onset NCL phenotype in these two dog breeds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To characterize the phenotype and map the locus responsible for autosomal recessive inherited ovine microphthalmia (OMO) in sheep. METHODS: Microphthalmia-affected lambs and their available relatives were collected in a field, and experimental matings were performed to obtain affected and normal lambs for detailed necropsy and histologic examinations. The matings resulted in 18 sheep families with 48 cases of microphthalmia. A comparative candidate gene approach was used to map the disease locus within the sheep genome. Initially, 27 loci responsible for the microphthalmia-anophthalmia phenotypes in humans or mice were selected to test for comparative linkage. Fifty flanking markers that were predicted from comparative genomic analysis to be closely linked to these genes were tested for linkage to the disease locus. After observation of statistical evidence for linkage, a confirmatory fine mapping strategy was applied by further genotyping of 43 microsatellites. RESULTS: The clinical and pathologic examinations showed slightly variable expressivity of isolated bilateral microphthalmia. The anterior eye chamber was small or absent, and a white mass admixed with cystic spaces extended from the papilla to the anterior eye chamber, while no recognizable vitreous body or lens was found within the affected eyes. Significant linkage to a single candidate region was identified at sheep chromosome 23. Fine mapping and haplotype analysis assigned the candidate region to a critical interval of 12.4 cM. This ovine chromosome segment encompasses an ancestral chromosomal breakpoint corresponding to two orthologue segments of human chromosomes 18, short and long arms. For the examined animals, we excluded the complete coding region and adjacent intronic regions of ovine TGIF1 to harbor disease-causing mutations. CONCLUSIONS: This is the first genetic localization for hereditary ovine isolated microphthalmia. It seems unlikely that a mutation in the TGIF1 gene is responsible for this disorder. The studied sheep represent a valuable large animal model for similar human ocular phenotypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Non-synonymous polymorphisms within the prion protein gene (PRNP) influence the susceptibility and incubation time for transmissible spongiform encephalopathies (TSE) in some species such as sheep and humans. In cattle, none of the known polymorphisms within the PRNP coding region has a major influence on susceptibility to bovine spongiform encephalopathy (BSE). Recently, however, we demonstrated an association between susceptibility to BSE and a 23 bp insertion/deletion (indel) polymorphism and a 12 bp indel polymorphism within the putative PRNP promoter region using 43 German BSE cases and 48 German control cattle. The objective of this study was to extend this work by including a larger number of BSE cases and control cattle of German and Swiss origin. RESULTS: Allele, genotype and haplotype frequencies of the two indel polymorphisms were determined in 449 BSE cattle and 431 unaffected cattle from Switzerland and Germany including all 43 German BSE and 16 German control animals from the original study. When breeds with similar allele and genotype distributions were compared, the 23 bp indel polymorphism again showed a significant association with susceptibility to BSE. However, some additional breed-specific allele and genotype distributions were identified, mainly related to the Brown breeds. CONCLUSION: Our study corroborated earlier findings that polymorphisms in the PRNP promoter region have an influence on susceptibility to BSE. However, breed-specific differences exist that need to be accounted for when analyzing such data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The melanocortin-4 receptor (MC4R) is expressed in the hypothalamus and regulates energy intake and body weight. In silico screening of the canine chromosome 1 sequence and a comparison with the porcine MC4R sequence by BLAST were performed. The nucleotide sequence of the whole coding region and 3'- and 5'-flanking regions of the dog (1214 bp) and red fox (1177 bp) MC4R gene was established and high conservation of the nucleotide sequences was revealed (99%). Five sets of PCR primers were designed and a search for polymorphism was performed by the SSCP technique in a group of 31 dogs representing nineteen breeds and 35 farm red foxes. Sequencing of DNA fragments, representing the identified SSCP patterns, revealed three single nucleotide polymorphisms (including a missense one) in dogs and four silent SNPs in red foxes. An average SNP frequency was approx. 1/400 bp in the dog and 1/300 bp in the red fox. We mapped the MC4R gene by FISH to the canine chromosome 1 (CFA1q1.1) and to the red fox chromosome 5 (VVU5p1.2).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened a set of transcription factors for regulation of a human HIC1 promoter reporter. We found that E2F1 strongly activates the full-length HIC1 promoter reporter. Promoter deletions and mutations identified two E2F responsive elements in the HIC1 core promoter region. Moreover, in vivo binding of E2F1 to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line Hep3B led to an increase of endogenous HIC1 mRNA, although bisulfite genomic sequencing of the HIC1 promoter revealed that the region bearing the two E2F1 binding sites is hypermethylated. In addition, endogenous E2F1 induced by etoposide treatment bound to the HIC1 promoter. Moreover, inhibition of E2F1 strongly reduced the expression of etoposide-induced HIC1. In conclusion, we identified HIC1 as novel E2F1 transcriptional target in DNA damage responses.