75 resultados para cell survival

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A critical role for Tie1, an orphan endothelial receptor, in blood vessel morphogenesis has emerged from mutant mouse studies. Moreover, it was recently demonstrated that certain angiopoietin (Ang) family members can activate Tie1. We report here that Ang1 induces Tie1 phosphorylation in endothelial cells. Tie1 phosphorylation was, however, Tie2 dependent because 1) Ang1 failed to induce Tie1 phosphorylation when Tie2 was down-regulated in endothelial cells; 2) Tie1 phosphorylation was induced in the absence of Ang1 by either a constitutively active form of Tie2 or a Tie2 agonistic antibody; 3) in HEK 293 cells Ang1 phosphorylated a form of Tie1 without kinase activity when coexpressed with Tie2, and Ang1 failed to phosphorylate Tie1 when coexpressed with kinase-defective Tie2. Ang1-mediated AKT and 42/44MAPK phosphorylation is predominantly Tie2 mediated, and Tie1 down-regulates this pathway. Finally, based on a battery of in vitro and in vivo data, we show that a main role for Tie1 is to modulate blood vessel morphogenesis by virtue of its ability to down-regulate Tie2-driven signaling and endothelial survival. Our new observations help to explain why Tie1 null embryos have increased capillary densities in several organ systems. The experiments also constitute a paradigm for how endothelial integrity is fine-tuned by the interplay between closely related receptors by a single growth factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The management of anemia in patients with chronic renal failure has greatly improved with the availability of recombinant human erythropoietin in the late 1980s, leading to a considerable reduction in mortality and morbidity and to an improvement in quality of life. The findings from recent controlled clinical outcome trials have resulted in a rather narrow, generally accepted therapeutic hematocrit target range. However, currently available dosing algorithms do not permit achievement and maintenance of target values within the therapeutic range in many patients. One possible explanation for this failure may be the ignorance of a finite erythrocyte lifespan not integrated into most algorithms. The purpose of this article is to underline the essential role played by the erythrocyte lifespan in the erythropoietic response to recombinant human erythropoietin and to encourage the integration of this concept in the future development of computer-assisted decision support systems.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS: Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS: Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS: Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium and Theileria parasites are obligate intracellular protozoa of the phylum Apicomplexa. Theileria infection of bovine leukocytes induces transformation of host cells and infected leukocytes can be kept indefinitely in culture. Theileria-dependent host cell transformation has been the subject of interest for many years and the molecular basis of this unique phenomenon is quite well understood. The equivalent life cycle stage of Plasmodium is the infection of mammalian hepatocytes, where parasites reside for 2-7 days depending on the species. Some of the molecular details of parasite-host interactions in P. berghei-infected hepatocytes have emerged only very recently. Similar to what has been shown for Theileria-infected leukocytes these data suggest that malaria parasites within hepatocytes also protect their host cell from programmed cell death. However, the strategies employed to inhibit host cell apoptotic pathways appear to be different to those used by Theileria. This review discusses similarities and differences at the molecular level of Plasmodium- and Theileria-induced regulation of the host cell survival machinery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The induction of cell death in immune cells by naturally occurring antibodies specific for death receptors may present an important antiinflammatory mechanism of intravenous immunoglobulin (IVIG). Conversely, the protection of tissue cells from death receptor-mediated apoptosis by blocking antibodies is thought to contribute to the beneficial effects of IVIG in certain inflammatory disorders such as toxic epidermal necrolysis, also known as Lyell's syndrome. In this review, we focus on recent insights into the role of functional antibodies against Fas, sialic acid-binding immunoglobulin-like lectin (Siglec)-8, and Siglec-9 receptors in IVIG-mediated cell survival or death effects. In addition, we examine a variety of factors in inflammatory disease that may interplay with these cellular events and influence the therapeutic efficacy or potency of IVIG. These involve activation status of the target cell, cytokine microenvironment, pathogenesis and stage of disease, individual genetic determinants, species characteristics, and batch-to-batch variations of IVIG preparations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The transcription factor PU.1 is a master regulator of myeloid differentiation and function. On the other hand, only scarce information is available on PU.1-regulated genes involved in cell survival. We now identified the glycolytic enzyme hexokinase 3 (HK3), a gene with cytoprotective functions, as transcriptional target of PU.1. Interestingly, HK3 expression is highly associated with the myeloid lineage and was significantly decreased in acute myeloid leukemia patients compared with normal granulocytes. Moreover, HK3 expression was significantly lower in acute promyelocytic leukemia (APL) compared with non-APL patient samples. In line with the observations in primary APL patient samples, we observed significantly higher HK3 expression during neutrophil differentiation of APL cell lines. Moreover, knocking down PU.1 impaired HK3 induction during neutrophil differentiation. In vivo binding of PU.1 and PML-RARA to the HK3 promoter was found, and PML-RARA attenuated PU.1 activation of the HK3 promoter. Next, inhibiting HK3 in APL cell lines resulted in significantly reduced neutrophil differentiation and viability compared with control cells. Our findings strongly suggest that HK3 is: (1) directly activated by PU.1, (2) repressed by PML-RARA, and (3) functionally involved in neutrophil differentiation and cell viability of APL cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The IkappaB kinase (IKK) complex controls processes such as inflammation, immune responses, cell survival and the proliferation of both normal and tumor cells. By activating NFkappaB, the IKK complex contributes to G1/S transition and first evidence has been presented that IKKalpha also regulates entry into mitosis. At what stage IKK is required and whether IKK also contributes to progression through mitosis and cytokinesis, however, has not yet been determined. In this study, we use BMS-345541, a potent allosteric small molecule inhibitor of IKK, to inhibit IKK specifically during G2 and during mitosis. We show that BMS-345541 affects several mitotic cell cycle transitions, including mitotic entry, prometaphase to anaphase progression and cytokinesis. Adding BMS-345541 to the cells released from arrest in S-phase blocked the activation of Aurora A, B and C, Cdk1 activation and histone H3 phosphorylation. Additionally, treatment of the mitotic cells with BMS-345541 resulted in precocious cyclin B1 and securin degradation, defective chromosome separation and improper cytokinesis. BMS-345541 was also found to override the spindle checkpoint in nocodazole-arrested cells. In vitro kinase assays using BMS-345541 indicate that these effects are not primarily due to a direct inhibitory effect of BMS-345541 on mitotic kinases such as Cdk1, Aurora A or B, Plk1 or NEK2. This study points towards a new potential role of IKK in cell cycle progression. Since deregulation of the cell cycle is one of the hallmarks of tumor formation and progression, the newly discovered level of BMS-345541 function could be useful for cell cycle control studies and may provide valuable clues for the design of future therapeutics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Survival and death of lymphocytes are regulated by the balance between pro- and antiapoptotic members of the Bcl-2 family; this is coordinated with the control of cell cycling and differentiation. Bim, a proapoptotic BH3-only member of the Bcl-2 family, can be regulated by MEK/ERK-mediated phosphorylation, which affects its binding to pro-survival Bcl-2 family members and its turnover. We investigated Bim modifications in mouse B and T lymphoid cells after exposure to apoptotic stimuli and during mitogenic activation. Treatment with ionomycin or cytokine withdrawal caused an elevation in Bim(EL), the most abundant Bim isoform. In contrast, in mitogenically stimulated T and B cells, Bim(EL) was rapidly phosphorylated, and its levels declined. Pharmacological inhibitors of MEK/ERK signaling prevented both of these changes in Bim, reduced proliferation, and triggered apoptosis of mitogen-stimulated T and B cells. Loss of Bim prevented this cell killing but did not restore cell cycling. These results show that during mitogenic stimulation of T and B lymphocytes MEK/ERK signaling is critical for two distinct processes, cell survival, mediated (at least in part) through phosphorylation and consequent inhibition of Bim, and cell cycling, which proceeds independently of Bim inactivation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apoptosis, the most common form of cell death, is a key mechanism in the build up and maintenance of both innate and adaptive immunity. Central to the apoptotic process is a family of intracellular cysteine proteases with aspartate-specificity, called caspases. Caspases are counter-regulated by multiple anti-apoptotic molecules, and the expression of the latter in leukocytes is largely dependent on survival factors. Therefore, the physiologic rates of apoptosis change under pathologic conditions. For instance, in inflammation, the expression of survival factors is usually elevated, resulting in increased cell survival and consequently in the accumulation of the involved immune cells. In many allergic diseases, eosinophil apoptosis is delayed contributing to both blood and tissue eosinophilia. Besides eosinophils, apoptosis of other leukocytes is also frequently prevented or delayed during allergic inflammatory processes. In contrast to inflammatory cells, accelerated cell death is often observed in epithelial cells, a mechanism, which amplifies or at least maintains allergic inflammation. In conclusion, deregulated cell death is a common phenomenon of allergic diseases that likely plays an important role in their pathogenesis. Whether the apoptosis is too little or too much depends on the cell type. In this review, we discuss the regulation of the lifespan of the participating leukocytes in allergic inflammatory responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7 days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls. The amphetamine-induced rotational behavior of all 6-OHDA-lesioned animals was monitored at various time points from 18 days before transplantation and up to 80 days after transplantation. Tyrosine hydroxylase (TH) immunostaining of the histologically processed brains served to assess the long-term survival of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after explantation, with an additional 23.1% loss after grafting, leaving 8.7% of the original number of TH-ir cells in the intracerebral grafts. This is to be compared with a survival rate of 9.1% for the TH-ir cells in the cell-suspension grafts. Immunostaining for the calcium-binding proteins calretinin, calbindin, and parvalbumin showed no differences in the neuronal expression of these proteins between the two graft types. In conclusion, we found comparable dopaminergic cell survival and functional effects of tissue-culture grafts and cell-suspension grafts, which currently is the type of graft most commonly used for experimental and clinical grafting. In this sense the result is promising for the development of an effective in vitro storage of fetal nigral tissue, which at the same time would allow neuroprotective and neurotrophic treatment prior to intracerebral transplantation.