105 resultados para Whole Genome Sequences

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic drivers of clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome predictions based on selected genes would be a very welcome approach for taxonomic studies, including DNA-DNA similarity, G+C content and representative phylogeny of bacteria. At present, DNA-DNA hybridizations are still considered the gold standard in species descriptions. However, this method is time-consuming and troublesome, and datasets can vary significantly between experiments as well as between laboratories. For the same reasons, full matrix hybridizations are rarely performed, weakening the significance of the results obtained. The authors established a universal sequencing approach for the three genes recN, rpoA and thdF for the Pasteurellaceae, and determined if the sequences could be used for predicting DNA-DNA relatedness within the family. The sequence-based similarity values calculated using a previously published formula proved most useful for species and genus separation, indicating that this method provides better resolution and no experimental variation compared to hybridization. By this method, cross-comparisons within the family over species and genus borders easily become possible. The three genes also serve as an indicator of the genome G+C content of a species. A mean divergence of around 1 % was observed from the classical method, which in itself has poor reproducibility. Finally, the three genes can be used alone or in combination with already-established 16S rRNA, rpoB and infB gene-sequencing strategies in a multisequence-based phylogeny for the family Pasteurellaceae. It is proposed to use the three sequences as a taxonomic tool, replacing DNA-DNA hybridization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND  Whole genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single nucleotide polymorphism (SNP)-typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS  Based on genome sequences of three historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1,642 patient isolates, and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS  We identified 68 patients associated with the outbreak strain. Most were diagnosed in 1991-1995, but cases were observed until 2011. Two thirds belonged to the homeless and substance abuser milieu. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into three sub-clusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS  Strain-specific SNP-genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real-time and at high resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Staphylococcus aureus, a leading cause of chronic or acute infections, is traditionally considered an extracellular pathogen despite repeated reports of S. aureus internalization by a variety of non-myeloid cells in vitro. This property potentially contributes to bacterial persistence, protection from antibiotics and evasion of immune defenses. Mechanisms contributing to internalization have been partly elucidated, but bacterial processes triggered intracellularly are largely unknown. RESULTS: We have developed an in vitro model using human lung epithelial cells that shows intracellular bacterial persistence for up to 2 weeks. Using an original approach we successfully collected and amplified low amounts of bacterial RNA recovered from infected eukaryotic cells. Transcriptomic analysis using an oligoarray covering the whole S. aureus genome was performed at two post-internalization times and compared to gene expression of non-internalized bacteria. No signs of cellular death were observed after prolonged internalization of Staphylococcus aureus 6850 in epithelial cells. Following internalization, extensive alterations of bacterial gene expression were observed. Whereas major metabolic pathways including cell division, nutrient transport and regulatory processes were drastically down-regulated, numerous genes involved in iron scavenging and virulence were up-regulated. This initial adaptation was followed by a transcriptional increase in several metabolic functions. However, expression of several toxin genes known to affect host cell integrity appeared strictly limited. CONCLUSION: These molecular insights correlated with phenotypic observations and demonstrated that S. aureus modulates gene expression at early times post infection to promote survival. Staphylococcus aureus appears adapted to intracellular survival in non-phagocytic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recurrent airway obstruction (RAO), or heaves, is a naturally occurring asthma-like disease that is related to sensitisation and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. A genome-wide scanning approach using two half-sibling families was taken in order to locate the chromosome regions that contribute to the inherited component of this condition in these families. Initially, a panel of 250 microsatellite markers, which were chosen as a well-spaced, polymorphic selection covering the 31 equine autosomes, was used to genotype the two half-sibling families, which comprised in total 239 Warmblood horses. Subsequently, supplementary markers were added for a total of 315 genotyped markers. Each half-sibling family is focused around a severely RAO-affected stallion, and the phenotype of each individual was assessed for RAO and related signs, namely, breathing effort at rest, breathing effort at work, coughing, and nasal discharge, using an owner-based questionnaire. Analysis using a regression method for half-sibling family structures was performed using RAO and each of the composite clinical signs separately; two chromosome regions (on ECA13 and ECA15) showed a genome-wide significant association with RAO at P < 0.05. An additional 11 chromosome regions showed a more modest association. This is the first publication that describes the mapping of genetic loci involved in RAO. Several candidate genes are located in these regions, a number of which are interleukins. These are important signalling molecules that are intricately involved in the control of the immune response and are therefore good positional candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Balkan endemic nephropathy (BEN) represents a chronic progressive interstitial nephritis in striking correlation with uroepithelial tumours of the upper urinary tract. The disease has endemic distribution in the Danube river regions in several Balkan countries. DNA methylation is a primary epigenetic modification that is involved in major processes such as cancer, genomic imprinting, gene silencing, etc. The significance of CpG island methylation status in normal development, cell differentiation and gene expression is widely recognized, although still stays poorly understood. Methods We performed whole genome DNA methylation array analysis on DNA pool samples from peripheral blood from 159 affected individuals and 170 healthy individuals. This technique allowed us to determine the methylation status of 27 627 CpG islands throughout the whole genome in healthy controls and BEN patients. Thus we obtained the methylation profile of BEN patients from Bulgarian and Serbian endemic regions. Results Using specifically developed software we compared the methylation profiles of BEN patients and corresponding controls and revealed the differently methylated regions. We then compared the DMRs between all patient-control pairs to determine common changes in the epigenetic profiles. SEC61G, IL17RA, HDAC11 proved to be differently methylated throughout all patient-control pairs. The CpG islands of all 3 genes were hypomethylated compared to controls. This suggests that dysregulation of these genes involved in immunological response could be a common mechanism in BEN pathogenesis in both endemic regions and in both genders. Conclusion Our data propose a new hypothesis that immunologic dysregulation has a place in BEN etiopathogenesis. Keywords: Epigenetics; Whole genome array analysis; Balkan endemic nephropathy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the complete genome sequences of both biotypes of a virus pair of bovine viral diarrhea virus (BVDV) subgenotype 1k. The viruses were isolated from a persistently infected calf suffering from mucosal disease. Compared to the noncytopathic biotype, the cytopathic biotype contains an insertion of 84 nucleotides and 22 nucleotide changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the sequences of two Klebsiella pneumoniae clinical isolates, strains JHCK1 and VA360, from a newborn with meningitis in Buenos Aires, Argentina, and from a tertiary care medical center in Cleveland, OH, respectively. Both isolates contain one chromosome and at least five plasmids; isolate VA360 contains the Klebsiella pneumoniae carbapenemase (KPC) gene

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the evidence for a genetic predisposition to develop equine sarcoids (ES), no whole genome scan for ES has been performed to date. The objective of this explorative study was to identify chromosome regions associated with ES. The studied population was comprised of two half-sibling sire families, involving a total of 222 horses. Twenty-six of these horses were affected with ES. All horses had been previously genotyped with 315 microsatellite markers. Quantitative trait locus (QTL) signals were suggested where the F statistic exceeded chromosome-wide significance at P < 0.05. The QTL analyses revealed significant signals reaching P < 0.05 on equine chromosome (ECA) 20, 23 and 25, suggesting a polygenic character for this trait. The candidate regions identified on ECA 20, 23 and 25 include genes regulating virus replication and host immune response. Further investigation of the chromosome regions associated with ES and of genes potentially responsible for the development of ES could form the basis for early identification of susceptible animals, breeding selection or the development of new therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contagious caprine pleuropneumonia (CCPP) caused by Mycoplasma capricolum subsp. capripneumoniae is a severe epidemic affecting mainly domestic Caprinae species but also affects wild Caprinae species. M. capricolum subsp. capripneumoniae belongs to the "Mycoplasma mycoides cluster." The disease features prominently in East Africa, in particular Kenya, Tanzania, and Ethiopia. CCPP also endangers wildlife and thus affects not only basic nutritional resources of large populations but also expensively built-up game resorts in affected countries. Here, we report the complete sequences of two M. capricolum subsp. capripneumoniae strains: the type strain F38 and strain ILRI181 isolated druing a recent outbreak in Kenya. Both genomes have a G+C content of 24% with sizes of 1,016,760 bp and 1,017,183 bp for strains F38 and ILRI181, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

REV3, the catalytic subunit of translesion polymerase zeta (polζ), is commonly associated with DNA damage bypass and repair. Despite sharing accessory subunits with replicative polymerase δ, very little is known about the role of polζ in DNA replication. We previously demonstrated that inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. To reveal determinants of this sensitivity and obtain insights into the cellular function of REV3, we performed whole human genome RNAi library screens aimed at identification of synthetic lethal interactions with REV3 in A549 lung cancer cells. The top confirmed hit was RRM1, the large subunit of ribonucleotide reductase (RNR), a critical enzyme of de novo nucleotide synthesis. Treatment with the RNR-inhibitor hydroxyurea (HU) synergistically increased the fraction of REV3-deficient cells containing single stranded DNA (ssDNA) as indicated by an increase in replication protein A (RPA). However, this increase was not accompanied by accumulation of the DNA damage marker γH2AX suggesting a role of REV3 in counteracting HU-induced replication stress (RS). Consistent with a role of REV3 in DNA replication, increased RPA staining was confined to HU-treated S-phase cells. Additionally, we found genes related to RS to be significantly enriched among the top hits of the synthetic sickness/lethality (SSL) screen further corroborating the importance of REV3 for DNA replication under conditions of RS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10-20 cases and 10-20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted re-sequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrl änder dogs. To our knowledge, this is the first time this family trio WGS-approach, has successfully been used to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrl änder dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G>C (p.R52P) was found to be concordant in eight additional cases and 16 healthy Kromfohrl änder dogs.