21 resultados para Vascular endothelium

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lymph nodes are strategically localized at the interfaces between the blood and lymphatic vascular system, delivering immune cells and antigens to the lymph node. As cellular junctions of endothelial cells actively regulate vascular permeability and cell traffic, we have investigated their molecular composition by performing an extensive immunofluorescence study for adherens and tight junction molecules, including vascular endothelium (VE)-cadherin, the vascular claudins 1, 3, 5 and 12, occludin, members of the junctional adhesion molecule family plus endothelial cell-selective adhesion molecule (ESAM)-1, platelet endothelial cell adhesion molecule-1, ZO-1 and ZO-2. We found that junctions of high endothelial venules (HEV), which serve as entry site for naive lymphocytes, are unique due to their lack of the endothelial cell-specific claudin-5. LYVE-1(+) sinus-lining endothelial cells form a diffusion barrier for soluble molecules that arrive at the afferent lymph and use claudin-5 and ESAM-1 to establish characteristic tight junctions. Analysis of the spatial relationship between the different vascular compartments revealed that HEV extend beyond the paracortex into the medullary sinuses, where they are protected from direct contact with the lymph by sinus-lining endothelial cells. The specific molecular architecture of cellular junctions present in blood and lymphatic vessel endothelium in peripheral lymph nodes establishes distinct barriers controlling the distribution of antigens and immune cells within this tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patients with adult growth hormone (GH) deficiency are thought to be of increased risk of cardiovascular disease. Impaired vascular reactivity to endothelium derived nitric oxid (NO) is an early event in the development of atherosclerosis. In order to detect a possible effect of GH on vascular endothelium we examined forearm vasodilator responses in 8 patients with adult GH-deficiency before and after 3 months GH replacement therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Asialoglycoprotein receptor-1 (ASGR1) mediates capture and phagocytosis of platelets in pig-to-primate liver xenotransplantation. However, thrombocytopenia is also observed in xenotransplantation or xenoperfusion of other porcine organs than liver. We therefore assessed ASGR1 expression as well as ASGR1-mediated xenogeneic platelet phagocytosis in vitro and ex vivo on porcine aortic, femoral arterial, and liver sinusoidal endothelial cells (PAEC/PFAEC/PLSEC). METHODS Porcine forelimbs were perfused with whole, heparinized human or autologous pig blood. Platelets were counted at regular intervals. Pig limb muscle and liver, as well as PAEC/PFAEC/PLSEC, were characterized for ASGR1 expression. In vitro, PAEC cultured on microcarrier beads and incubated with non-anticoagulated human blood were used to study binding of human platelets and platelet-white blood cell aggregation. Carboxyfluorescein diacetate succinimidyl ester-labeled human platelets were exposed to PAEC/PFAEC/PLSEC and analyzed for ASGR1-mediated phagocytosis. RESULTS Human platelet numbers decreased from 102 ± 33 at beginning to 13 ± 6 × 10/μL (P < 0.0001) after 10 minutes of perfusion, whereas no significant decrease of platelets was seen during autologous perfusions (171 ± 26 to 122 ± 95 × 10/μL). The PAEC, PFAEC, and PLSEC all showed similar ASGR1 expression. In vitro, no correlation was found between reduction in platelet count and platelet-white blood cell aggregation. Phagocytosis of human carboxyfluorescein diacetate succinimidyl ester-labeled platelets by PAEC/PFAEC/PLSEC peaked at 15 minutes and was inhibited (P < 0.05 to P < 0.0001) by rabbit anti-ASGR1 antibody and asialofetuin. CONCLUSIONS The ASGR1 expressed on aortic and limb arterial pig vascular endothelium plays a role in binding and phagocytosis of human platelets. Therefore, ASGR1 may represent a novel therapeutic target to overcome thrombocytopenia associated with vascularized pig-to-primate xenotransplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excessive erythrocytosis results in severely increased blood viscosity, which may have significant detrimental effects on endothelial cells and, ultimately, function of the vascular endothelium. Because blood-brain barrier stability is crucial for normal physiological function, we used our previously characterized erythropoietin-overexpressing transgenic (tg6) mouse line (which has a hematocrit of 0.8-0.9) to investigate the effect of excessive erythrocytosis on vessel number, structure, and integrity in vivo. These mice have abnormally high levels of nitric oxide (NO), a potent proinflammatory molecule, suggesting altered vascular permeability and function. In this study, we observed that brain vessel density of tg6 mice was significantly reduced (16%) and vessel diameter was significantly increased (15%) compared with wild-type mice. Although no significant increases in vascular permeability under normoxic or acute hypoxic conditions (8% O2 for 4 h) were detected, electron-microscopic analysis revealed altered morphological characteristics of the tg6 endothelium. Tg6 brain vascular endothelial cells appeared to be activated, with increased luminal protrusions reminiscent of ongoing inflammatory processes. Consistent with this observation, we detected increased levels of intercellular adhesion molecule-1 and von Willebrand factor, markers of endothelial activation and damage, in brain tissue. We propose that chronic excessive erythrocytosis and sustained high hematocrit cause endothelial damage, which may, ultimately, increase susceptibility to vascular disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Euro-Collins solution (EC) is routinely used in lung transplantation. The high potassium of EC, however, may damage the vascular endothelium, thereby contributing to postischemic reperfusion injury. To assess the influence of the potassium concentration on lung preservation, we evaluated the effect of a "low potassium Euro-Collins solution" (LPEC), in which the sodium and potassium concentrations were reversed. METHODS: In an extracorporeal rat heart-lung model lungs were preserved with EC and LPEC. The heart-lung blocks (HLB) were perfused with Krebs-Henseleit solution containing washed bovine red blood cells and ventilated with room air. The lungs were perfused via the working right ventricle with deoxygenated perfusate. Oxygenation and pulmonary vascular resistance (PVR) were monitored. After baseline measurements, hearts were arrested with St. Thomas' solution and the lungs were perfused with EC or LPEC, or were not perfused (controls). The HLBs were stored for 5 min or 2 h ischemic time at 4 degrees C. Reperfusion and ventilation was performed for 40 min. At the end of the trial the wet/dry ratio of the lungs was calculated and light microscopic assessment of the degree of edema was performed. RESULTS: After 5 min of ischemia oxygenation was significantly better in both preserved groups compared to the controls. Pulmonary vascular resistance was elevated in all three groups after 30 min reperfusion at both ischemic times. After 2 h of ischemia PVR of the group preserved with LPEC was significantly lower than those of the EC and controls (LPEC-5 min: 184 +/- 65 dynes * sec * cm-5, EC-5 min: 275 +/- 119 dynes * sec * cm * cm-5, LPEC-2 h: 324 +/- 47 dynes * sec * m-5, EC-2 h: 507 +/- 83 dynes * sec * cm-5). Oxygenation after 2 h of ischemia and 30 min reperfusion was significantly better in the LPEC group compared to EC and controls (LPEC: 70 +/- 17 mmHg, EC: 44 +/- 3 mmHg). The wet/dry ratio was significantly lower in the two preserved groups compared to controls (LPEC-5 min: 5.7 +/- 0.7, EC-5 min: 5.8 +/- 1.2, controls-5 min: 7.5 +/- 1.8, LPEC-2 h: 6.7 +/- 0.4, EC: 6.9 +/- 0.4, controls-2 h: 7.3 +/- 0.4). CONCLUSIONS: We thus conclude that LPEC results in better oxygenation and lower PVR in this lung preservation model. A low potassium concentration in lung preservation solutions may help in reducing the incidence of early graft dysfunction following lung transplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of human recombinant erythropoietin (EPO) on the microcirculation and oxygenation of critically ischemic tissue and to elucidate the role of endothelial NO synthase in EPO-mediated tissue protection. Island flaps were dissected from the back skin of anesthetized male Syrian golden hamsters including a critically ischemic, hypoxic area that was perfused via a collateralized vasculature. Before ischemia, animals received an injection of epoetin beta at a dose of 5,000 U/kg body weight with (n = 7) or without (n = 7) blocking NO synthase by 30 mg/kg body weight L-NAME (Nomega-nitro-L-arginine methyl ester hydrochloride). Saline-treated animals served as control (n = 7). Ischemic tissue damage was characterized by severe hypoperfusion and inflammation, hypoxia, and accumulation of apoptotic cell nuclei after 5 h of collateralization. Erythropoietin pretreatment increased arteriolar and venular blood flow by 33% and 37%, respectively (P < 0.05), and attenuated leukocytic inflammation by approximately 75% (P < 0.05). Furthermore, partial tissue oxygen tension in the ischemic tissue increased from 8.2 to 15.8 mmHg (P < 0.05), which was paralleled by a 21% increased density of patent capillaries (P < 0.05) and a 50% reduced apoptotic cell count (P < 0.05). The improved microcirculation and oxygenation were associated with a 2.2-fold (P < 0.05) increase of endothelial NO synthase protein expression. Of interest, L-NAME completely abolished all the beneficial effects of EPO pretreatment. Our study demonstrates that, in critically ischemic and hypoxic collateralized tissue, EPO pretreatment improves tissue perfusion and oxygenation in vivo. This effect may be attributed to NO-dependent vasodilative effects and anti-inflammatory actions on the altered vascular endothelium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exact mechanism for capillary occlusion in diabetic retinopathy is still unclear, but increased leukocyte-endothelial cell adhesion has been implicated. We examined the possibility that posttranslational modification of surface O-glycans by increased activity of core 2 transferase (UDP-Glc:Galbeta1-3GalNAcalphaRbeta-N-acetylglucoaminyltr ansferase) is responsible for increased adhesion of leukocytes to vascular endothelium in diabetes. The mean activity of core 2 transferase in polymorphonuclear leukocytes isolated from type 1 and type 2 diabetic patients was higher compared with age-matched control subjects (1,638 +/- 91 [n = 42] vs. 249 +/- 35 pmol x h(-1) x mg(-1) protein [n = 24], P = 0.00013; 1,459 +/- 194 [n = 58] vs. 334 +/- 86 [n = 11], P = 0.01). As a group, diabetic patients with retinopathy had significantly higher mean activity of core 2 transferase compared with individuals with no retinopathy. There was a significant association between enzyme activity and severity of retinopathy in type 1 and type 2 diabetic patients. There was a strong correlation between activity of core 2 transferase and extent of leukocyte adhesion to cultured retinal capillary endothelial cells for diabetic patients but not for age-matched control subjects. Results from transfection experiments using human myelocytic cell line (U937) demonstrated a direct relationship between increased activity of core 2 transferase and increased binding to cultured endothelial cells. There was no relationship between activity of core 2 transferase and HbA(1c) (P = 0.8314), serum advanced glycation end product levels (P = 0.4159), age of the patient (P = 0.7896), and duration of diabetes (P = 0.3307). On the basis that branched O-glycans formed by the action of core 2 transferase participate in leukocyte adhesion, the present data suggest the involvement of this enzyme in increased leukocyte-endothelial cell adhesion and the pathogenesis of capillary occlusion in diabetic retinopathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Besides α1,3 galactosyltransferase (Gal) gene knockout several transgene combinations to prevent pig-to-human xenograft rejection are being investigated. hCD46/HLA-E double transgenic pigs were tested for prevention of xenograft rejection in an ex vivo pig-to-human xenoperfusion model. In addition, expression of human thrombomodulin (hTM-) on wild-type and/or multi-transgenic (GalTKO/hCD46) background was evaluated to overcome pig-to-human coagulation incompatibility. Methods hCD46/HLA-E double transgenic as well as wild-type pig forelimbs were ex vivo perfused with whole, heparinized human blood and autologous blood, respectively. Blood samples were analyzed for production of porcine and/or human inflammatory cytokines. Biopsy samples were examined for deposition of complement proteins as well as E-selectin and VCAM-1 expression. Serial blood cell counts were performed to analyze changes in human blood cell populations. In vitro, PAEC were analyzed for ASGR1 mediated human platelet phagocytosis. In addition, a biochemical assay was performed using hTM-only and multi-transgenic (GalTKO/hCD46/hTM) pig aortic endothelial cells (PAEC) to evaluate the ability of hTM to generate activated protein C (APC). Subsequently, the anti-coagulant properties of hTM were tested in a microcarrier based coagulation assay with PAEC and human whole blood. Results No hyperacute rejection was seen in the ex vivo perfusion model. Extremity perfusions lasted for up to 12 h without increase of vascular resistance and had to be terminated due to continuous small blood losses. Plasma levels of porcine IL1β (P < 0.0001), and IL-8 (P = 0.019) as well as human C3a, C5a and soluble C5b-9 were significantly (P < 0.05–<0.0001) lower in blood perfused through hCD46/HLA-E transgenic as compared to wild-type limbs. C3b/c, C4b/c, and C6 deposition as well as E-selectin and VCAM-1 expression were significantly (P < 0.0001) higher in tissue of wild-type as compared to transgenic limbs. Preliminary immunofluorescence staining results showed that the expression of hCD46/HLA-E is associated with a reduction of NK cell tissue infiltration (P < 0.05). A rapid decrease of platelets was observed in all xenoperfusions. In vitro findings showed that PAEC express ASGR1 and suggest that this molecule is involved in human platelet phagocytosis. In vitro, we found that the amount of APC in the supernatant of hTM transgenic cells increased significantly (P < 0.0001) with protein C concentration in a dose-dependent manner as compared to control PAEC lacking hTM, where the turnover of the protein C remained at the basal level for all of the examined concentration. In further experiments, hTM also showed the ability to prevent blood coagulation by three- to four-fold increased (P < 0.001) clotting time as compared to wild-type PAEC. The formation of TAT complexes was significantly lower when hTM-transgenic cells (P < 0.0001) were used as compared to wild-type cells. Conclusions Transgenic hCD46/HLA-E expression clearly reduced humoral xenoresponses since the terminal pathway of complement, endothelial cell activation, inflammatory cytokine production and NK-cell tissue infiltration were all down-regulated. We also found ASGR1 expression on the vascular endothelium of pigs, and this molecule may thus be involved in binding and phagocytosis of human platelets during pig-to-human xenotransplantation. In addition, use of the hTM transgene has the potential to overcome coagulation incompatibilities in pig-to-human xenotransplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycosylation represents an important modification that regulates biological processes in tissues relevant for disease pathogenesis in systemic sclerosis (SSc), including the endothelium and extracellular matrix. Whether patients with SSc develop antibodies to carbohydrates is not known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastrin-releasing peptide (GRP) and GRP receptors (GRPR) play a role in tumor angiogenesis. Recently, GRPR were found to be frequently expressed in the vasculature of a large variety of human cancers. Here, we characterize these GRPR by comparing the vascular GRPR expression and localization in a selection of human cancers with that of an established biological marker of neoangiogenesis, the vascular endothelial growth factor (VEGF) receptor. In vitro quantitative receptor autoradiography was performed in parallel for GRPR and VEGF receptors (VEGFR) in 32 human tumors of various origins, using ¹²⁵I-Tyr-bombesin and ¹²⁵I-VEGF₁₆₅ as radioligands, respectively. Moreover, VEGFR-2 was evaluated immunohistochemically. All tumors expressed GRPR and VEGFR in their vascular system. VEGFR were expressed in the endothelium in the majority of the vessels. GRPR were expressed in a subpopulation of vessels, preferably in their muscular coat. The vessels expressing GRPR were all VEGFR-positive whereas the VEGFR-expressing vessels were not all GRPR-positive. GRPR expressing vessels were found immunohistochemically to co-express VEGFR-2. Remarkably, the density of vascular GRPR was much higher than that of VEGFR. The concomitant expression of GRPR with VEGFR appears to be a frequent phenomenon in many human cancers. The GRPR, localized and expressed in extremely high density in a subgroup of vessels, may function as target for antiangiogenic tumor therapy or angiodestructive targeted radiotherapy with radiolabeled bombesin analogs alone, or preferably together with VEGFR targeted therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

VE-PTP, a receptor-type phosphotyrosine phosphatase, associates with the tyrosine kinase receptor Tie-2 and VE-cadherin and enhances the adhesive function of the latter. Here, VE-PTP was found to be restricted to endothelial cells, with a preference for arterial endothelium. Mutant mice expressing a truncated, secreted form of VE-PTP lacking the cytoplasmic and transmembrane domains and the most membrane-proximal extracellular fibronectin type III repeat, showed severe vascular malformations causing lethality at 10 days of gestation. Although blood vessels were initially formed, the intraembryonic vascular system soon deteriorated. Blood vessels in the yolk sac developed into dramatically enlarged cavities. In explant cultures of mutant allantoides, endothelial cells were found next to vessel structures growing as cell layers. No signs for enhanced endothelial apoptosis or proliferation were observed. Thus, the activity of VE-PTP is not required for the initial formation of blood vessels, yet it is essential for their maintenance and remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.