3 resultados para Vírus do RNA

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the work reported here is to test reliable molecular profiles using routinely processed formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-up of 60 months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. Aims To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. Methods T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-γ-ELISpot responses to HCV core peptides, that predominantly stimulate CD4+ T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. Results The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log10 IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (−0.3 log10 IU/ml, p=0.02). Conclusions Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, few areas of biology have been transformed as thoroughly as RNA molecular biology. Without any doubt, one of the most significant advances has been the discovery of small (20-30 nucleotide) noncoding RNAs that regulate genes and genomes. The effects of small RNAs on gene expression and control are generally inhibitory, and the corresponding regulatory mechanisms are therefore collectively subsumed under the heading of RNA silencing and/or RNA interference. Two primary categories of these small RNAs - short interfering RNAs (siRNAs) and microRNAs (miRNAs) - act in both somatic and germline lineages of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA and miRNA-based regulation has direct implications for fundamental biology as well as disease aetiology and treatment as it is discussed in this review on 'new techniques in molecular biology'.