2 resultados para TiO2 Organic Sol, Compact Film, Blocking Layer, DSSCs

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High resolution friction force maps of the benzylammonium terminated crystalline surface of a layer compound are presented. The lateral force map acquired with an atomic force microscope, reveals a significant contrast between different molecular orientations yielding molecular rows which differ from their neighboring ones. The single crystals are formed by stacks of copper oxalate sheets sandwiched between stereoregular organic cations, resulting in highly organized surface structures. Single molecular defects are observed at small loads. The experimental results are compared with numerical calculations which indicate a transition from an unperturbed state at small loads to a distorted state at higher loads. (C) 2011 American Institute of Physics.