9 resultados para SOLVENT

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermolecular electron-transfer reactions have a crucial role in biology, solution chemistry and electrochemistry. The first step of such reactions is the expulsion of the electron to the solvent, whose mechanism is determined by the structure and dynamical response of the latter. Here we visualize the electron transfer to water using ultrafast fluorescence spectroscopy with polychromatic detection from the ultraviolet to the visible region, upon photo-excitation of the so-called charge transfer to solvent states of aqueous iodide. The initial emission is short lived (~60 fs) and it relaxes to a broad distribution of lower-energy charge transfer to solvent states upon rearrangement of the solvent cage. This distribution reflects the inhomogeneous character of the solvent cage around iodide. Electron ejection occurs from the relaxed charge transfer to solvent states with lifetimes of 100–400 fs that increase with decreasing emission energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

10.1002/hlca.19980810512.abs The synthesis of the Fmoc-protected amino acid 2 is presented. First attempts of amide-bond formation to the homodimer 4 in solution showed only poor coupling yields indicative for the low reactivity of the amino and carboxy groups in the building blocks 1 and 2, respectively (Scheme 1). Best coupling yields were found using dicyclohexylcarbodiimide (DCC) without any additive. The oligomerization of building block 2 adopting the Fmoc ((9H-fluoren-9-ylmethoxy)carbonyl) solid-phase synthesis yielded a mixture of N-terminal-modified distamycin-NA derivatives. By combined HPLC and MALDI-TOF-MS analysis, the N-terminal functional groups could be identified as acetamide and N,N-dimethylformamidine functions, arising from coupling of the N-terminus of the growing chain with residual AcOH or DCC-activated solvent DMF. An improved preparation of building block 2 and coupling protocol led to the prevention of the N-terminal acetylation. However, ‘amidination’ could not be circumvented. A thus isolated tetramer of 2, containing a lysine unit at the C-terminus and a N,N-dimethylformamidine-modified N-terminus, not unexpectedly, showed no complementary base pairing to DNA and RNA, as determined by standard UV-melting-curve analysis.