35 resultados para Resistance mechanisms

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past 2 decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDI-TOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nearly 10 years ago the usefulness of poly(ADP-ribose) polymerase (PARP) inhibitors to kill BRCA1 or BRCA2-deficient cells was reported, and this finding has served as a prime example of the concept of synthetic lethality in the context of anticancer therapy. The clinical translation of this finding has undergone several ups and downs, however. Despite spectacular responses seen in some patients with BRCA-deficient breast or ovarian cancers, other patients did not show the expected benefit from PARP inhibitor therapy. Thus, like for all novel tailored anti-cancer drugs, upfront and secondary resistance remain major hurdles in the implementation of the initial preclinical finding. We know at least one clinically relevant mechanism of PARP inhibitor resistance: the reversion of BRCA function by secondary mutations. Nevertheless, it is also clear that this mechanism does not explain all cases of resistance. At the moment, we only have a poor understanding of BRCA reversion-independent resistance mechanisms. Preclinical data have pointed in several directions, e.g. increased drug efflux, reduced drug target levels, or alternative DNA repair. Here, we discuss these mechanisms with a focus on potential DNA repair adaptations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two homosexual men were colonized in the urethra with Haemophilus parainfluenzae nonsusceptible to ampicillin (MIC, 8 μg/ml), amoxicillin-clavulanate (MIC, 4 μg/ml), cefotaxime (MIC, 1.5 μg/ml), cefepime (MIC, 3 μg/ml), meropenem (MIC, 0.5 μg/ml), cefuroxime, azithromycin, ciprofloxacin, tetracycline, and chloramphenicol (all MICs, ≥ 32 μg/ml). Repetitive extragenic palindromic PCR (rep-PCR) showed that the strains were indistinguishable. The isolates had amino acid substitutions in PBP3, L4, GyrA, and ParC and possessed Mef(A), Tet(M), and CatS resistance mechanisms. This is the first report of extensively drug-resistant (XDR) H. parainfluenzae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antiretroviral therapy to treat HIV, as we know it today, is nothing less than a huge success story in modern medical history. What used to be an almost certain death-sentence was transformed into a very manageable chronic disease by means of highly efficient und mostly well tolerated drugs. Today, HIV-infected patients treated according to international recommendations have a very good chance to outgo the negative effects of HIV-1 and are therefore able to reach an almost normal life expectancy. Furthermore, patients successfully treated with antiretroviral drugs are no longer infectious, which is an essential aspect of global strategies to overcome the pandemic. Nevertheless, due to the complexity of HIV, physicians treating patients with antiretroviral therapy require profound knowledge of aspects such as viral resistance mechanisms and immune reconstitution, as well as drug-toxicity und drug-drug-interactions. Many other aspects such as long-term side-effects of antiretroviral drugs are still unknown. Strict adherence to treatment is of utmost importance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While many anticancer therapies aim to target the death of tumor cells, sophisticated resistance mechanisms in the tumor cells prevent cell death induction. In particular enzymes of the glutathion-S-transferase (GST) family represent a well-known detoxification mechanism, which limit the effect of chemotherapeutic drugs in tumor cells. Specifically, GST of the class P1 (GSTP1-1) is overexpressed in colorectal tumor cells and renders them resistant to various drugs. Thus, GSTP1-1 has become an important therapeutic target. We have recently shown that thiazolides, a novel class of anti-infectious drugs, induce apoptosis in colorectal tumor cells in a GSTP1-1-dependent manner, thereby bypassing this GSTP1-1-mediated drug resistance. In this study we investigated in detail the underlying mechanism of thiazolide-induced apoptosis induction in colorectal tumor cells. Thiazolides induce the activation of p38 and Jun kinase, which is required for thiazolide-induced cell death. Activation of these MAP kinases results in increased expression of the pro-apoptotic Bcl-2 homologs Bim and Puma, which inducibly bind and sequester Mcl-1 and Bcl-xL leading to the induction of the mitochondrial apoptosis pathway. Of interest, while an increase in intracellular glutathione levels resulted in increased resistance to cisplatin, it sensitized colorectal tumor cells to thiazolide-induced apoptosis by promoting increased Jun kinase activation and Bim induction. Thus, thiazolides may represent an interesting novel class of anti-tumor agents by specifically targeting tumor resistance mechanisms, such as GSTP1-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Minimal residual disease (MRD) is a major hurdle in the eradication of malignant tumors. Despite the high sensitivity of various cancers to treatment, some residual cancer cells persist and lead to tumor recurrence and treatment failure. Obvious reasons for residual disease include mechanisms of secondary therapy resistance, such as the presence of mutant cells that are insensitive to the drugs, or the presence of cells that become drug resistant due to activation of survival pathways. In addition to such unambiguous resistance modalities, several patients with relapsing tumors do not show refractory disease and respond again when the initial therapy is repeated. These cases cannot be explained by the selection of mutant tumor cells, and the precise mechanisms underlying this clinical drug resistance are ill-defined. In the current review, we put special emphasis on cell-intrinsic and -extrinsic mechanisms that may explain mechanisms of MRD that are independent of secondary therapy resistance. In particular, we show that studying genetically engineered mouse models (GEMMs), which highly resemble the disease in humans, provides a complementary approach to understand MRD. In these animal models, specific mechanisms of secondary resistance can be excluded by targeted genetic modifications. This allows a clear distinction between the selection of cells with stable secondary resistance and mechanisms that result in the survival of residual cells but do not provoke secondary drug resistance. Mechanisms that may explain the latter feature include special biochemical defense properties of cancer stem cells, metabolic peculiarities such as the dependence on autophagy, drug-tolerant persisting cells, intratumoral heterogeneity, secreted factors from the microenvironment, tumor vascularization patterns and immunosurveillance-related factors. We propose in the current review that a common feature of these various mechanisms is cancer cell dormancy. Therefore, dormant cancer cells appear to be an important target in the attempt to eradicate residual cancer cells, and eventually cure patients who repeatedly respond to anticancer therapy but lack complete tumor eradication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions. © 2016 Macmillan Publishers Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the many cell types that may prove useful to regenerative medicine, mounting evidence suggests that human term placenta-derived cells will join the list of significant contributors. In making new cell therapy-based strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and characteristics of cells from different sources should be made to promote constant improvement in cell therapies, and such comparisons will likely show that individually tailored cells can address disease-specific clinical needs. The principle underlying such an approach is resistance to the notion that comprehensive characterization of any cell type has been achieved, neither in terms of phenotype nor risks-to-benefits ratio. Tailoring cell therapy approaches to specific conditions also requires an understanding of basic disease mechanisms and close collaboration between translational researchers and clinicians, to identify current needs and shortcomings in existing treatments. To this end, the international workshop entitled "Placenta-derived stem cells for treatment of inflammatory diseases: moving toward clinical application" was held in Brescia, Italy, in March 2009, and aimed to harness an understanding of basic inflammatory mechanisms inherent in human diseases with updated findings regarding biological and therapeutic properties of human placenta-derived cells, with particular emphasis on their potential for treating inflammatory diseases. Finally, steps required to allow their future clinical application according to regulatory aspects including good manufacturing practice (GMP) were also considered. In September 2009, the International Placenta Stem Cell Society (IPLASS) was founded to help strengthen the research network in this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant pleural mesothelioma (MPM) is a lethal cancer of the mesothelium with high chemotherapeutic resistance via unknown mechanisms. A prevailing hypothesis states that cancer stem cells (CSCs) persist in tumors causing relapse after chemotherapy, thus, rendering these cells as critical targets responsible for tumor resistance and recurrence. We selected candidate CSC markers based on expansion under hypoxic conditions, a hallmark for the selection of chemoresistant cells; and investigated the expression of CSC markers: CD133, Bmi-1, uPAR and ABCG2 in three MPM cell lines and normal mesothelial cells by quantitative RT-PCR. Furthermore, we evaluated the chemotherapeutic resistance associated with each CSC marker by determining the change in CSC marker-mRNA levels as an index of drug-resistance following treatment with either cisplatin or pemetrexed. We demonstrate the expression of CSC markers: CD133, Bmi-1, uPAR and ABCG2 in both normal and MPM cell lines. Bmi-1+, uPAR+ and ABCG2+ cells show a distinct role in conferring chemoresistance to cisplatin and pemetrexed in the malignant setting. By contrast, these markers have no apparent participation in chemoresistance to drug treatments in normal mesothelial cells. Intriguingly, CD133 revealed chemoresistant properties in both normal mesothelial and malignant pleural mesothelioma cells. This study provides evidence of putative CSCs conferring drug-resistance to cisplatin and pemetrexed in MPM cell lines. Specific targeting of these drug-resistant cells, while considering the functional heterogeneity of the MPM subtypes, may contribute to more focused and effective chemotherapeutic regimens for malignant pleural mesothelioma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after cessation of treatment. In numerous preclinical studies, angiogenesis inhibitors were shown to be efficient in the treatment of many pathological conditions, including solid cancers. In most clinical trials, however, this approach turned out to have no significant effect, especially if applied as monotherapy. Recovery of tumors after therapy is a major problem in the management of cancer patients. The mechanisms underlying tumor recovery (or therapy resistance) have not yet been explicitly elucidated. This review deals with the transient switch from sprouting to intussusceptive angiogenesis, which may be an adaptive response of tumor vasculature to cancer therapy that allows the vasculature to maintain its functional properties. Potential candidates for molecular targeting of this angioadaptive mechanism are yet to be elucidated in order to improve the currently poor efficacy of contemporary antiangiogenic therapies.