29 resultados para Push-out bond strength

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This study evaluated the initial and the artificially aged push-out bond strength between ceramic and dentin produced by one of five resin cements. METHODS: Two-hundred direct ceramic restorations (IPS Empress CAD) were luted to standardized Class I cavities in extracted human molars using one of four self-adhesive cements (SpeedCEM, RelyX Unicem Aplicap, SmartCem2 and iCEM) or a reference etch-and-rinse resin cement (Syntac/Variolink II) (n=40/cement). Push-out bond strength (PBS) was measured (1) after 24h water storage (non-aged group; n=20/cement) or (2) after artificial ageing with 5000 thermal cycles followed by 6 months humid storage (aged group; n=20/cement). Nonparametrical ANOVA and pairwise Wilcoxon rank-sum tests with Bonferroni-Holm adjustment were applied for statistical analysis. The significance level was set at alpha=0.05. In addition, failure mode and fracture pattern were analyzed by stereomicroscope and scanning electron microscopy. RESULTS: Whereas no statistically significant effect of storage condition was found (p=0.441), there was a significant effect of resin cement (p<0.0001): RelyX Unicem showed significantly higher PBS than the other cements. Syntac/Variolink II showed significantly higher PBS than SmartCEM2 (p<0.001). No significant differences were found between SpeedCEM, SmartCem2, and iCEM. The predominant failure mode was adhesive failure of cements at the dentin interface except for RelyX Unicem which in most cases showed cohesive failure in ceramic. SIGNIFICANCE: The resin cements showed marked differences in push-out bond strength when used for luting ceramic restorations to dentin. Variolink II with the etch-and-rinse adhesive Syntac did not perform better than three of the four self-adhesive resin cements tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the bond strength to dentin of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after 24 hours and after six months storage. Methods and Materials: Ninety cylinders were milled out of Lava Ultimate (3M ESPE) and 90 cylinders out of VITA ENAMIC (VITA Zahnfabrik) (dimension of cylinders: ∅=3.6 mm, h=2 mm). All Lava Ultimate cylinders were sandblasted (aluminium oxide, grain size: 27 μm) and cleaned with ethanol, whereas all VITA ENAMIC cylinders were acid-etched (5% hydrofluoric acid) and cleaned with water-spray. According to the three groups of cements used, the cylinders (n=30/resin-ceramic material) were further pretreated with 1) Scotchbond Universal for RelyX Ultimate (3M ESPE), 2) CLEARFIL Ceramic Primer for PANAVIA F2.0 (Kuraray), or 3) no further pretreatment for Ketac Cem Plus (3M ESPE). The cylinders were then bonded to ground human dentin specimens with 1) Scotchbond Universal and RelyX Ultimate (light-cured), 2) ED PRIMER II and PANAVIA F2.0 (light-cured), or 3) no adhesive system; Ketac Cem Plus (self-cured). Shear bond strength (SBS) was measured after 24 hours for 15 specimens/group and after six months (37°C, 100% humidity) for the other 15 specimens/group. SBS-values were statistically analysed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests (α=0.05). Results: SBS of the two resin-ceramic materials and the three cements after 24 hours and after six months storage are shown in Figure 1. The statistical analysis showed that the duration of storage had a significant effect on SBS of Lava Ultimate for all three cements but had no significant effect on SBS of VITA ENAMIC. For Lava Ultimate SBS-values were (MPa; medians after 24 hours/six months): 13.5/22.5 (p=0.04) for RelyX Ultimate, 11.4/5.8 (p=0.0006) for PANAVIA F2.0, and 0.34/0.09 (p=0.04) for Ketac Cem Plus (Fig. 1). For VITA ENAMIC SBS-values were (MPa; medians after 24 hours/six months): 16.0/21.2 (p=0.10) for RelyX Ultimate, 11.4/14.4 (p=0.06) for PANAVIA F2.0, and 0.43/0.41 (p=0.32) for Ketac Cem Plus (Fig. 1). After 24 hours, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for all three cements (p≥0.37). After six months, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for RelyX Ultimate and Ketac Cem Plus (p≥0.07) whereas for PANAVIA F2.0, SBS was significantly lower for Lava Ultimate than for VITA ENAMIC (p<0.0001). Conclusion: SBS of Lava Ultimate was more affected by six months storage and by the cement used than was VITA ENAMIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The objectives of this in vitro study were (1) to assess the bond strength of the universal cement RelyX Unicem to dentin and to compare it with three conventional resin cements, (2) to test the influence of aging on their bonding capacity and (3) to test the influence of the operator on bonding quality by performing the same test in two different centers. METHODS: 160 third molars, divided into 80 for tests at the University of Zurich (Z) and 80 for tests at the University of Berne (B), were assigned to 2 x 8 subgroups of 10 teeth each. The specimens were prepared with the corresponding bonding agents and acrylic rods were luted either with RelyX Unicem (U), RelyX ARC (A), Multilink (M) or Panavia 21 (P). All specimens were stored in water for 24h (W) and half of the specimens were subjected to 1500 cycles of thermocycling (5 degrees C and 55 degrees C) (T). Bond strength was measured by means of a shear test. RESULTS: After water storage RelyX Unicem exhibited lowest bond strength (UWZ: 9.2+/-1.6 MPa, UWB: 9.9+/-1.2 MPa, AWZ: 15.3+/-6.0 MPa, AWB: 12.2+/-4.3 MPa, MWZ: 15.6+/-3.3 MPa, MWB: 12.4 MPa+/-2.4, PWZ: 13.4+/-2.9 MPa, PWB: 14.9+/-2.6 MPa). Thermocycling affected the bonding performance of all four cements. However, bond strength of RelyX Unicem was least influenced by thermocycling (UTZ: 9.4+/-2.9 MPa, UTB: 8.6+/-1.3 MPa, ATZ: 11.4+/-6.3 MPa, ATB: 13.3+/-3.7 MPa, MTZ: 15.4+/-3.1 MPa, MTB: 10.3+/-2.4 MPa, PTZ: 11.1+/-2.8 MPa, PTB: 11.3+/-2.8 MPa). SIGNIFICANCE: Although the bond strength of RelyX Unicem to dentin was lower in comparison to RelyX ARC, Multilink and Panavia 21, its bond strength was less sensitive to variations in handling and aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide–eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H3PO4) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg−1 of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H3PO4 or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To determine the effect on resin composite-to-dentin bond strength of incorporation of an acidic tin-chloride pretreatment in two adhesive systems. MATERIALS AND METHODS: Human molars were ground to expose mid-coronal dentin. For microtensile bond strength (μTBS) testing, dentin was treated with Optibond FL or Clearfil SE according to one of six protocols (n = 22/group). Group 1: Phosphoric acid etching, Optibond FL Prime, Optibond FL Adhesive (manufacturer's instructions; control); Group 2: Tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 3: Phosphoric acid etching, tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 4: Clearfil SE Primer, Clearfil SE Bond (manufacturer's instructions; control); Group 5: Phosphoric acid etching, Clearfil SE Primer, Clearfil SE Bond; and Group 6: Tin-chloride pretreatment, Clearfil SE Primer, Clearfil SE Bond. The molars were then built up with resin composite (Clearfil Majesty Esthetic). After storage (1 week, 100  % humidity, 37 °C) the μTBS was measured and failure mode was determined. Additionally, pretreated dentin surfaces were evaluated using SEM and EDX. The μTBS results were analyzed statistically by a Welch Two Sample t-test and a Kruskal-Wallis test followed by exact Wilcoxon rank sum tests with Bonferroni-Holm adjustment for multiple testing (α = 0.05). RESULTS: When Optibond FL was used, partial or total replacement of phosphoric acid with tin-chloride decreased μTBS significantly. In contrast, when Clearfil SE was used, inclusion of a tin-chloride pretreatment in the adhesive procedure increased μTBS significantly. CONCLUSIONS: Tin-chloride pretreatment had a beneficial influence on the bond promoting capacity of the MDP-containing adhesive system Clearfil SE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The study investigated the modification of composite-to-enamel bond strength by pre-treatment of enamel with a concentrated, acidic SnCl2-solution. METHODS Six groups of flat human enamel specimens (n=44 per group) were treated as follows: OB-H: H3PO4 etching, Optibond FL application (primer+adhesive; manufacturer's instructions); OB-S: SnCl2 pre-treatment, Optibond FL application (primer+adhesive); OB-HS: H3PO4 etching+SnCl2 pre-treatment, Optibond FL application (primer+adhesive); CF-N: Clearfil SE application (primer+bond; manufacturer's instructions); CF-H: H3PO4 etching, Clearfil SE application (primer+bond); CF-S: SnCl2 pre-treatment, Clearfil SE application (primer+bond). Enamel specimens were then built up with resin composite (Clearfil Majesty Esthetic) and stored (100% humidity, 37 °C, 1 week). μTBS-measurement and failure mode analysis of one-half of the specimens were performed immediately after storage, while the other half was analysed after a thermocycling procedure (8500 cycles; 5 °C and 55 °C; dwell time 30s). Additional specimens were prepared for SEM- and EDX-analysis. RESULTS Highest values were measured for OB-H before and after thermocycling, lowest values for CF-N. Compared to OB-H treatment, OB-S treatment reduced μTBS before/after thermocycling by 23%/28% and OB-HS treatment by 8%/24% (except for OB-SH before (n.s.), all p≤0.001 compared to OB-H). In the Clearfil SE treated groups pre-treatment increased μTBS significantly compared to CF-N (before/after: CF-H: +46%/+70%; CF-S: +51%/42%; all p≤0.001). CONCLUSION Pre-treatment with H3PO4 or SnCl2 markedly increased the μTBS of Clearfil SE to enamel. However, thermocycling partly reduced the gain in μTBS obtained by SnCl2 pre-treatment. CLINICAL SIGNIFICANCE The application of an acidic and highly concentrated SnCl2 solution is a good option to increase the μTBS between enamel and a resin composite mediated by an adhesive system containing the multifunctional monomer MDP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim was to investigate the influence of increment thickness on shear bond strength (SBS) to dentin of a conventional and two bulk fill flowable composites. Methods: A total of 135 specimens of ground human dentin were produced (n=15/group; 3 increment thicknesses; 3 flowable composites) and the dentin surfaces were treated with the adhesive system OptiBond FL (Kerr) according to manufacturer’s instructions. Split Teflon molds (inner diameter: 3.6 mm) of 2 mm, 4 mm, or 6 mm height allowing three increment thicknesses were clamped on the dentin surfaces and filled with either the conventional flowable Filtek Supreme XTE ((XTE); 3M ESPE) or the bulk fill flowables Filtek Bulk Fill ((FBF); 3M ESPE) or SDR ((SDR); DENTSPLY Caulk). The flowable composites were light-cured for 20 s (Demi LED; Kerr) and the specimens stored for 24 h (37°C, 100% humidity). Specimens were then subjected to a SBS-test in a universal testing machine at a cross-head speed of 1 mm/min (Zwick Z010; Zwick GmbH & Co.). SBS-values were statistically analysed with a nonparametrical ANOVA followed by exact Wilcoxon rank sum tests (α=0.05). Failure mode of the specimens was determined under a stereomicroscope at 25× magnification. Results: SBS-values (MPa) at 2 mm/4 mm/6 mm increment thicknesses (mean value [standard deviation]) were for XTE: 18.8 [2.6]/17.6 [1.6]/16.7 [3.1], for FBF: 20.6 [2.7]/17.8 [2.7]/18.7 [2.9], and for SDR: 21.7 [2.6]/18.5 [2.6]/20.3 [3.0]. For all three flowable composites, 2 mm increments yielded the highest SBS-values whereas for increments of 4 mm and 6 mm no differences were detected. All specimens presented failure modes involving cohesive failure in dentin. Conclusion: The influence of increment thickness on dentin SBS was less pronounced than expected. However, the high number of cohesive failures in dentin, reflecting the efficiency of the adhesive system, suggests a limited discriminatory power of the SBS-test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To investigate the influence of increment thickness on Vickers microhardness (HV) and shear bond strength (SBS) to dentin of a conventional and four bulk fill resin composites. METHODS HV and SBS were determined on specimens of the conventional resin composite Filtek Supreme XTE (XTE) and the bulk fill resin composites SDR (SDR), Filtek Bulk Fill (FBF), x-tra fil (XFIL), and Tetric EvoCeram Bulk Fill (TEBF) after 24h storage. HV was measured either as profiles at depths up to 6mm or at the bottom of 2mm/4mm/6mm thick resin composite specimens. SBS of 2mm/4mm/6mm thick resin composite increments was measured to dentin surfaces of extracted human molars treated with the adhesive system OptiBond FL, and the failure mode was stereomicroscopically determined at 40× magnification. HV profiles and failure modes were descriptively analysed whereas HV at the bottom of resin composite specimens and SBS were statistically analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). RESULTS HV profiles (medians at 2mm/4mm/6mm): XTE 105.6/88.8/38.3, SDR 34.0/35.5/36.9, FBF 36.4/38.7/37.1, XFIL 103.4/103.9/101.9, TEBF 63.5/59.7/51.9. HV at the bottom of resin composite specimens (medians at 2mm/4mm/6mm): XTE (p<0.0001) 105.5>85.5>31.1, SDR (p=0.10) 25.8=21.9=26.0, FBF (p=0.16) 26.6=25.3=28.9, XFIL (p=0.18) 110.5=107.2=101.9, TEBF (p<0.0001) 63.0>54.9>48.2. SBS (MPa, medians at 2mm/4mm/6mm): XTE (p<0.0001) 23.9>18.9=16.7, SDR (p=0.26) 24.6=22.7=23.4, FBF (p=0.11) 21.4=20.3=22.0, x-tra fil (p=0.55) 27.0=24.0=23.6, TEBF (p=0.11) 21.0=20.7=19.0. The predominant SBS failure mode was cohesive failure in dentin. SIGNIFICANCE At increasing increment thickness, HV and SBS decreased for the conventional resin composite but generally remained constant for the bulk fill resin composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To evaluate the effects of salivary contamination and decontamination on bond strength of two one-step adhesives to primary and permanent dentin. Methods: Dentin specimens were prepared from extracted primary and permanent molars (210 of each) and were distributed to seven groups (n=15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light-curing of the adhesives followed either by air-drying, by rinsing with water and air-drying, or by rinsing with water, air-drying and reapplication of the adhesives. Resin composite was applied and the specimens were stored for 24h (37°C, 100% humidity). Then, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA and Wilcoxon rank sum tests. Results: Saliva contamination reduced SBS of Xeno V+, the reduction being more pronounced when contamination occurred before light-curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Conclusion: Saliva contamination reduced SBS of Xeno V+, but not of Scotchbond Universal. SBS was restored when contaminated dentin was rinsed with water and air-dried followed by reapplication of the adhesive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Materials and Methods: Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Results: Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Conclusion: Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. MATERIALS AND METHODS A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). RESULTS Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). CONCLUSION Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The shear bond strength of three glass ionomer cements (GIC) to enamel and dentine was evaluated. STUDY DESIGN Sound permanent human molars (n=12) were grinded perpendicular to their axial axes, exposing smooth, flat enamel and dentine surfaces. The teeth were embedded in resin and conditioned with polyacrylic acid (25%; 10s). Twenty four specimens of each GIC: Fuji IX (FJ-GC), Ketac Molar Easymix (KM-3M ESPE) and Maxxion (MX-FGM) were prepared according to the Atraumatic Restorative Treatment (ART) (12 enamel and 12 dentine), in a bonding area of 4.91 mm² and immersed in water (37°C, 24h). The shear bond strength was tested in a universal testing machine. Non-parametric statistical tests (Friedman and post-hoc Wilcoxon Signed Ranks) were carried out (p=0.05). RESULTS The mean (±sd) of shear bond strength (MPa), on enamel and dentine, were: KM (6.4±1.4 and 7.6±1.5), FJ (5.9±1.5 and 6.0±1.9) and MX (4.2±1.5 and 4.9±1.5), respectively. There was a statistically significant difference between the GICs in both groups: enamel (p=0.004) and dentine (p=0.002). The lowest shear bond value for enamel was with MX and the highest for dentine was KM (p<0.05). CONCLUSION It is concluded that KM has the best adhesion to both enamel and dentine, followed by FJ and MX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: AuTi alloys with 1.6% to 1.7% (wt%) Ti provide sufficient bond strength to veneering ceramics, but the strength of entire metal-ceramic restorations fabricated from these alloys is not known. However, this information is important to assess the clinical performance of such materials. PURPOSE: This in vitro study evaluated the fracture strength and thermal shock resistance of metal-ceramic crowns with AuTi frameworks produced by milling or casting. MATERIAL AND METHODS: Frameworks of the alloy Au-1.7Ti-0.1Ir (wt%) (Esteticor Vision) were produced by milling or casting (test groups). A high-gold alloy (Esteticor Special) was used as the control. The frameworks were veneered with ceramic (VMK 95). Specimens (n=7) were loaded until fracture. Loads at failure (N) were recorded and the mean values statistically evaluated using 1-way analysis of variance and a post hoc Dunnett test (alpha=.05). To assess the crazing resistance of the veneering ceramic, 6 additional crowns of each group were subjected to a thermal shock test. Fractured surfaces were documented by scanning electron microscopy. Coefficients of thermal expansion of the materials used were measured (n=2) to assess the thermal compatibility between alloys and ceramic. RESULTS: The mean fracture strength of the crowns with machined AuTi frameworks (1294 +/- 236 N) was significantly lower (P=.012) than that of the cast AuTi frameworks (1680 +/- 150 N), but statistically not different than the high-gold alloy (1449 +/- 159 N). Bonding failure to the AuTi alloy predominantly occurred at the alloy-oxide interface. For the high-gold alloy, more ceramic residues were observed. In the thermal shock test, crowns with milled AuTi frameworks showed significantly higher thermal shock resistance compared to the other groups. The coefficients of thermal expansion (Esteticor Vision cast: 14.5 microm/m.K; Esteticor Vision milled: 14.3 microm/m.K; Esteticor Special cast: 13.7 microm/m.K) did not correlate with the results of the thermal shock test. CONCLUSION: The in vitro fracture strength of crowns with milled AuTi frameworks is lower than that obtained with cast AuTi frameworks, but comparable to those crowns produced with a high-gold alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To evaluate the effect of a tin-containing fluoride (Sn/F) mouth rinse on microtensile bond strength (μTBS) between resin composite and erosively demineralised dentin. MATERIALS AND METHODS Dentin of 120 human molars was erosively demineralised using a 10-day cyclic de- and remineralisation model. For 40 molars, the model comprised erosive demineralisation only; for another 40, the model included treatment with a NaF solution; and for yet another 40, the model included treatment with a Sn/F mouth rinse. In half of these molars (n = 20), the demineralised organic matrix was continuously removed by collagenase. Silicon carbide paper-ground, non-erosively demineralised molars served as control (n = 20). Subsequently, μTBS of Clearfil SE/Filtek Z250 to the dentin was measured, and failure mode was determined. Additionally, surfaces were evaluated using SEM and EDX. RESULTS Compared to the non-erosively demineralised control, erosive demineralisation resulted in significantly lower μTBS regardless of the removal of demineralised organic matrix. Treatment with NaF increased μTBS, but the level of μTBS obtained by the non-erosively demineralised control was only reached when the demineralised organic matrix had been removed. The Sn/F mouth rinse together with removal of demineralised organic matrix led to significantly higher µTBS than did the non-erosively demineralised control. The Sn/F mouth rinse yielded higher μTBS than did the NaF solution. CONCLUSIONS Treatment of erosively demineralised dentin with a NaF solution or a Sn/F mouth rinse increased the bond strength of resin composite. CLINICAL RELEVANCE Bond strength of resin composite to eroded dentin was not negatively influenced by treatment with a tin-containing fluoride mouth rinse.