14 resultados para Myofibroblast

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Among grape skin polyphenols, trans-resveratrol (RES) has been reported to slow the development of cardiac fibrosis and to affect myofibroblast (MFB) differentiation. Because MFBs induce slow conduction and ectopic activity following heterocellular gap junctional coupling to cardiomyocytes, we investigated whether RES and its main metabolites affect arrhythmogenic cardiomyocyte-MFB interactions. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage-sensitive dyes. Long-term video recordings served to characterize drug-related effects on ectopic activity. Data are given as means ± S.D. (n = 4–20). Results: Exposure of pure cardiomyocyte strands to RES at concentrations up to 10 µmol/L had no significant effects on impulse conduction velocity (θ) and maximal action potential upstroke velocities (dV/dtmax). By contrast, in MFB-coated strands exhibiting slow conduction, RES enhanced θ with an EC50 of ~10 nmol/L from 226 ± 38 to 344 ± 24 mm/s and dV/dtmax from 48 ± 7 to 69 ± 2%APA/ms, i.e., to values of pure cardiomyocyte strands (347 ± 33 mm/s; 75 ± 4%APA/ms). Moreover, RES led to a reduction of ectopic activity over the course of several hours in heterocellular preparations. RES is metabolized quickly in the body; therefore, we tested the main known metabolites for functional effects and found them similarly effective in normalizing conduction with EC50s of ~10 nmol/L (3-OH-RES), ~20 nmol/L (RES-3-O-β-glucuronide) and ~10 nmol/L (RES-sulfate), respectively. At these concentrations, neither RES nor its metabolites had any effects on MFB morphology and α-smooth muscle actin expression. This suggests that the antiarrhythmic effects observed were based on mechanisms different from a change in MFB phenotype. Conclusions: The results demonstrate that RES counteracts MFB-dependent arrhythmogenic slow conduction and ectopic activity at physiologically relevant concentrations. Because RES is rapidly metabolized following intestinal absorption, the finding of equal antiarrhythmic effectiveness of the main RES metabolites warrants their inclusion in future studies of potentially beneficial effects of these substances on the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. Objective: We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast–cardiomyocyte cross-talk. Methods and Results: Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. Conclusions: The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Slow conduction and ectopic activity are key elements of cardiac arrhythmogenesis. Both anomalies can be caused by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. Because MFBs are characterized by the expression of {alpha}-smooth muscle actin ({alpha}-SMA) containing stress fibers, we investigated whether pharmacological interference with stress fiber formation might affect myofibroblast arrhythmogenicity. Methods: Experiments were done with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage sensitive dyes. Electrophysiological characteristics of single MFBs were assessed using patch clamp techniques. Actin polymerization was inhibited by latrunculin B (LtB). Data are given as mean±S.D. (n=5 to 22). Results: As assessed by immunocytochemistry, exposure of MFBs to LtB (0.3–10 µmol/L) profoundly disrupted stress fiber formation. This led, within minutes, to a dramatic change in cell morphology with MFBs assuming an astrocyte-like shape. In pure cardiomyocyte preparations, LtB had negligible effects on impulse conduction velocity ({theta}) and maximal action potential upstroke velocities (dV/dtmax). In contrast, LtB applied to MFB coated cardiomyocyte strands substantially increased {theta} from 247±32 to 371±26 mm/s and dV/dtmax from 40±7 to 81±1 %APA/ms, i.e., to values similar to those of pure cardiomyocyte strands (342±13 mm/s; 82±1 %APA/ms). Moreover, LtB at 1 µmol/L completely abolished MFB induced ectopic activity. LtB induced normalization of electrophysiologic parameters can be explained by the finding that LtB hyperpolarized MFBs from –25 mV to –50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause slow conduction and ectopic activity. Conclusions: Pharmacological interference with the cytoskeleton of cardiac MFBs alters their electrophysiological phenotype to such an extent that detrimental effects on cardiomyocyte electrophysiology are completely abolished. This observation might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural remodeling of the myocardium associated with mechanical overload or cardiac infarction is accompanied by the appearance of myofibroblasts. These fibroblast-like cells express alpha-smooth muscle actin (alphaSMA) and have been shown to express connexins in tissues other than heart. The present study examined whether myofibroblasts of cardiac origin establish heterocellular gap junctional coupling with cardiomyocytes and whether ensuing electrotonic interactions affect impulse propagation. For this purpose, impulse conduction characteristics (conduction velocity [theta] and maximal upstroke velocity [dV/dtmax]) were assessed optically in cultured strands of cardiomyocytes, which were coated with fibroblasts of cardiac origin. Immunocytochemistry showed that cultured fibroblasts underwent a phenotype switch to alphaSMA-positive myofibroblasts that expressed connexin 43 and 45 both among themselves and at contact sites with cardiomyocytes. Myofibroblasts affected theta and dV/dtmax in a cell density-dependent manner; a gradual increase of myofibroblast-to-cardiomyocyte ratios up to 7:100 caused an increase of both theta and dV/dtmax, which was followed by a progressive decline at higher ratios. On full coverage of the strands with myofibroblasts (ratio >20:100), theta fell <200 mm/s. This biphasic dependence of theta and dV/dtmax on myofibroblast density is reminiscent of "supernormal conduction" and is explained by a myofibroblast density-dependent gradual depolarization of the cardiomyocyte strands from -78 mV to -50 mV as measured using microelectrode recordings. These findings suggest that myofibroblasts, apart from their role in structural remodeling, might contribute to arrhythmogenesis by direct electrotonic modulation of conduction and that prevention of their appearance might represent an antiarrhythmic therapeutic target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering strategies are gathering clinical momentum in regenerative medicine and are expected to provide excellent opportunities for therapy for difficult-to-treat human pathologies. Being aware of the requirement to produce larger artificial tissue implants for clinical applications, we used microtissues, produced using gravity-enforced self-assembly of monodispersed primary cells, as minimal tissue units to generate scaffold-free vascularized artificial macrotissues in custom-shaped agarose molds. Mouse myoblast, pig and human articular-derived chondrocytes, and human myofibroblast (HMF)-composed microtissues (microm3 scale) were amalgamated to form coherent macrotissue patches (mm3 scale) of a desired shape. Macrotissues, assembled from the human umbilical vein endothelial cell (HUVEC)-coated HMF microtissues, developed a vascular system, which functionally connected to the chicken embryo's vasculature after implantation. The design of scaffold-free vascularized macrotissues is a first step toward the scale-up and production of artificial tissue implants for future tissue engineering initiatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focal ectopic activity in cardiac tissue is a key factor in the initiation and perpetuation of tachyarrhythmias. Because myofibroblasts as present in fibrotic remodeled myocardia and infarct scars depolarize cardiomyocytes by heterocellular electrotonic interactions via gap junctions in vitro, we investigated using strands of cultured ventricular cardiomyocytes coated with myofibroblasts, whether this interaction might give rise to depolarization-induced abnormal automaticity. Whereas uncoated cardiomyocyte strands were invariably quiescent, myofibroblasts induced synchronized spontaneous activity in a density dependent manner. Activations appeared at spatial myofibroblast densities >15.7% and involved more than 80% of the preparations at myofibroblast densities of 50%. Spontaneous activity was based on depolarization-induced automaticity as evidenced by: (1) suppression of activity by the sarcolemmal K(ATP) channel opener P-1075; (2) induction of activity in current-clamped single cardiomyocytes undergoing depolarization to potentials similar to those induced by myofibroblasts in cardiomyocyte strands; and (3) induction of spontaneous activity in cardiomyocyte strands coated with connexin 43 transfected Hela cells but not with communication deficient HeLa wild-type cells. Apart from unveiling the mechanism underlying the hallmark of monolayer cultures of cardiomyocytes, ie, spontaneous electromechanical activity, these findings open the perspective that myofibroblasts present in structurally remodeled myocardia following pressure overload and infarction might contribute to arrhythmogenesis by induction of ectopic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques. Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity. Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma.