7 resultados para Metabolic activities

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stationary-phase bacterial cells are characterized by vastly reduced metabolic activities yielding a dormant-like phenotype. Several hibernation programs ensure the establishment and maintenance of this resting growth state. Some of the stationary phase-specific modulations affect the ribosome and its translational activity directly. In stationary-phase Escherichia coli, we observed the appearance of a 16S rRNA fragmentation event at the tip of helix 6 within the small ribosomal subunit (30S). Stationary-phase 30S subunits showed markedly reduced activities in protein biosynthesis. On the other hand, the functional performance of stationary-phase large ribosomal subunits (50S) was indistinguishable from particles isolated from exponentially growing cells. Introduction of the 16S rRNA cut in vitro at helix 6 of exponential phase 30S subunits renders them less efficient in protein biosynthesis. This indicates that the helix 6 fragmentation is necessary and sufficient to attenuate translational activities of 30S ribosomal subunits. These results suggest that stationary phase-specific cleavage of 16S rRNA within the 30S subunit is an efficient means to reduce global translation activities under non-proliferating growth conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A is a nutrient with remarkable effects on adipose tissue and skeletal muscles, and plays a role in controlling energy balance. Retinoic acid (RA), the carboxylic form of vitamin A, has been associated with improved glucose tolerance and insulin sensitivity. In contrast, elevated glucocorticoids have been implicated in the development of insulin resistance and impaired glucose tolerance. Here, we investigated whether RA might counteract glucocorticoid effects in skeletal muscle cells by lowering 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local glucocorticoid activation and/or activation of glucocorticoid receptor (GR). We found a dose-dependent down-regulation of 11beta-HSD1 mRNA expression and activity upon incubation of fully differentiated mouse C2C12 myotubes with RA. In addition, RA inhibited GR transactivation by an 11beta-HSD1-independent mechanism. The presence of RA during myogenesis did not prevent myotube formation but resulted in relatively glucocorticoid-resistant myotubes, exhibiting very low 11beta-HSD1 expression and GR activity. The use of selective retinoic acid receptor (RAR) and retinoid X receptor ligands provided evidence that these effects were mediated through RARgamma. Importantly, short hairpin RNA against RARgamma abolished the effect of RA on 11beta-HSD1 and GR. In conclusion, we provide evidence for an important role of RA in the control of glucocorticoid activity during myogenesis and in myotubes. Disturbances of the nutrient and hormonal regulation of glucocorticoid action in skeletal muscles might be relevant for metabolic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the result as in vivo intrinsic clearance. Additional guidance is provided on the care and handling of test animals, design and interpretation of preliminary studies, and development of analytical methods. Although initially developed to predict metabolism impacts on chemical accumulation by fish, these procedures can be used to support a broad range of scientific and risk assessment activities including evaluation of emerging chemical contaminants and improved interpretation of toxicity testing results. These protocols have been designed for rainbow trout and can be adapted to other species as long as species-specific considerations are modified accordingly (e.g., fish maintenance and incubation mixture temperature). Rainbow trout is a cold-water species. Protocols for other species (e.g., carp, a warm-water species) can be developed based on these procedures as long as the specific considerations are taken into account.