30 resultados para Metabolic Clearance Rate

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes is associated with abnormalities of the growth hormone (GH)-IGF-I axis. Such abnormalities include decreased circulating levels of IGF-I. We studied the effects of IGF-I therapy (40 microg x kg(-1) x day(-1)) on protein and glucose metabolism in adults with type 1 diabetes in a randomized placebo-controlled trial. A total of 12 subjects participated, and each subject was studied at baseline and after 7 days of treatment, both in the fasting state and during a hyperinsulinemic-euglycemic amino acid clamp. Protein and glucose metabolism were assessed using infusions of [1-13C]leucine and [6-6-2H2]glucose. IGF-I administration resulted in a 51% rise in circulating IGF-I levels (P < 0.005) and a 56% decrease in the mean overnight GH concentration (P < 0.05). After IGF-I treatment, a decrease in the overnight insulin requirement (0.26+/-0.07 vs. 0.17+/-0.06 U/kg, P < 0.05) and an increase in the glucose infusion requirement were observed during the hyperinsulinemic clamp (approximately 67%, P < 0.05). Basal glucose kinetics were unchanged, but an increase in insulin-stimulated peripheral glucose disposal was observed after IGF-I therapy (37+/-6 vs. 52+/-10 micromol x kg(-1) x min(-1), P < 0.05). IGF-I administration increased the basal metabolic clearance rate for leucine (approximately 28%, P < 0.05) and resulted in a net increase in leucine balance, both in the basal state and during the hyperinsulinemic amino acid clamp (-0.17+/-0.03 vs. -0.10+/-0.02, P < 0.01, and 0.25+/-0.08 vs. 0.40+/-0.06, P < 0.05, respectively). No changes in these variables were recorded in the subjects after administration of placebo. These findings demonstrated that IGF-I replacement resulted in significant alterations in glucose and protein metabolism in the basal and insulin-stimulated states. These effects were associated with increased insulin sensitivity, and they underline the major role of IGF-I in protein and glucose metabolism in type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased cardiovascular mortality in adult growth hormone deficiency (GHD) may be, in part, explained by the dyslipidaemia associated with this condition. It is possible that abnormalities of very low density lipoprotein apolipoprotein B-100 (VLDL apoB) metabolism contribute to this dyslipidaemia. To test this hypothesis, we measured VLDL apoB kinetics in adult GH deficient patients (4 females, 3 males; age 50.1 +/- 4.7 yr (mean +/- SEM); BMI 28.2 +/- 1.1 kg/m2; total cholesterol (TC) 6.6 +/- 0.3 mmol/l; triglyceride (TG) 2.8 +/- 0.6 mmol/l; HDL cholesterol 1.1 +/- 0.1 mmol/l) and in control subjects (4 females, 3 male; age 47.0 +/- 4.7 yr; BMI 27.0 +/- 2.6 kg/m2; TC 5.0 +/- 0.4 mmol/l; TG 0.9 +/- 0.2 mmol/l; HDL cholesterol 1.4 +/- 0.1 mmol/l). [1-(13)C] leucine was administered by a primed (1 mg/kg), constant intravenous infusion (1 mg/kg/hr) and VLDL apoB enrichment with 13C leucine was determined using gas-chromatography mass-spectrometry. The GHD patients had a significantly higher hepatic secretion rate of VLDL apoB (15.5 +/- 1.8 mg/kg/day vs 9.4 +/- 0.6 mg/kg/day p = 0.007) and reduced catabolism ofVLDL apoB (metabolic clearance rate; 12.3 +/- 1.7 ml/min vs 24.3 +/- 4.8 ml/min p < 0.05) compared with control subjects. These findings suggest that GH is integrally involved in the regulation of VLDL apoB metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using stable isotope techniques to establish turnover rates for very low density lipoprotein (VLDL), a group of eight adult patients with growth hormone deficiency (GHD) exhibited an increased VLDL apoprotein B (apo B) secretion and decreased VLDL apoB metabolic clearance rate compared to controls. Such increased secretion is seen in some dyslipidemic states, including GHD, which are associated with atherosclerosis. The study of VLDL metabolism may provide a clue to the lipid metabolism disorder associated with GHD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Patients with adult GH deficiency are often dyslipidemic and may have an increased risk of cardiovascular disease. The secretion and clearance of very low density lipoprotein apolipoprotein B 100 (VLDL apoB) are important determinants of plasma lipid concentrations. This study examined the effect of GH replacement therapy on VLDL apoB metabolism using a stable isotope turnover technique. VLDL apoB kinetics were determined in 14 adult patients with GH deficiency before and after 3 months GH or placebo treatment in a randomized double blind, placebo-controlled study using a primed constant [1-(13)C]leucine infusion. VLDL apoB enrichment was determined by gas chromatography-mass spectrometry. GH replacement therapy increased plasma insulin-like growth factor I concentrations 2.9 +/- 0.5-fold (P < 0.001), fasting insulin concentrations 1.8 +/- 0.6-fold (P < 0.04), and hemoglobin A1C from 5.0 +/- 0.2% to 5.3 +/- 0.2% (mean +/- SEM; P < 0.001). It decreased fat mass by 3.4 +/- 1.3 kg (P < 0.05) and increased lean body mass by 3.5 +/- 0.8 kg (P < 0.01). The total cholesterol concentration (P < 0.02), the low density lipoprotein cholesterol concentration (P < 0.02), and the VLDL cholesterol/VLDL apoB ratio (P < 0.005) decreased. GH therapy did not significantly change the VLDL apoB pool size, but increased the VLDL apoB secretion rate from 9.2 +/- 2.0 to 25.9 +/- 10.3 mg/kg x day (P < 0.01) and the MCR from 11.5 +/- 2.7 to 20.3 +/- 3.2 mL/min (P < 0.03). No significant changes were observed in the placebo group. This study suggests that GH replacement therapy improves lipid profile by increasing the removal of VLDL apoB. Although GH therapy stimulates VLDL apoB secretion, this is offset by the increase in the VLDL apoB clearance rate, which we postulate is due to its effects in up-regulating low density lipoprotein receptors and modifying VLDL composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change and anthropogenic pollution are of increasing concern in remote areas such as Antarctica. The evolutionary adaptation of Antarctic notothenioid fish to the cold and stable Southern Ocean led to a low plasticity of their physiological functions, what may limit their capacity to deal with altered temperature regimes and pollution in the Antarctic environment. Using a biochemical approach, we aimed to assess the hepatic biotransformation capacities of Antarctic fish species by determining (i) the activities of ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), and (ii) the metabolic clearance of benzo(a)pyrene by hepatic S9 supernatants. In addition, we determined the thermal sensitivity of the xenobiotic biotransformation enzymes. We investigated the xenobiotic metabolism of the red-blooded Gobionotothen gibberifrons and Notothenia rossii, the hemoglobin-less Chaenocephalus aceratus and Champsocephalus gunnari, and the rainbow trout Oncorhynchus mykiss as a reference. Our results revealed similar metabolic enzyme activities and metabolic clearance rates between red- and white-blooded Antarctic fish, but significantly lower rates in comparison to rainbow trout. Therefore, bioaccumulation factors for metabolizable lipophilic contaminants may be higher in Antarctic than in temperate fish. Likewise, the thermal adaptive capacities and flexibilities of the EROD and GST activities in Antarctic fish were significantly lower than in rainbow trout. As a consequence, increasing water temperatures in the Southern Ocean will additionally compromise the already low detoxification capacities of Antarctic fish.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mammalian birth is accompanied by profound changes in metabolic rate that can be described in terms of body size relationship (Kleiber's rule). Whereas the fetus, probably as an adaptation to the low intrauterine pO2, exhibits an "inappropriately" low, adult-like specific metabolic rate, the term neonate undergoes a rapid metabolic increase up to the level to be expected from body size. A similar, albeit slowed, "switching-on" of metabolic size allometry is found in human preterm neonates whereas animals that are normally born in a very immature state are able to retard or even suppress the postnatal metabolic increase in favor of weight gain and O2 supply. Moreover, small immature mammalian neonates exhibit a temporary oxyconforming behavior which enhances their hypoxia tolerance, yet is lost to the extent by which the size-adjusted metabolic rate is "locked" by increasing mitochondrial density. Beyond the perinatal period, there are no other deviations from metabolic size allometry among mammals except in hibernation where the temporary "switching-off" of Kleiber's rule is accompanied by a deep reduction in tissue pO2. This gives support to the hypothesis that the postnatal metabolic increase represents an "escape from oxygen" similar to the evolutionary roots of mitochondrial respiration, and that the overall increase in specific metabolic rate with decreasing size might contribute to prevent tissues from O2 toxicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the currently available predictive equations for basal metabolic rate (BMR) in subjects with obesity class II and III, and to assess the contribution by the components of a two-compartment model of body composition, namely the lean body mass (LBM) and the fat mass (FM) to the prediction. A second objective was to examine the reliability of the Harris Benedict equation in obese subjects, especially with a weight > or = 120 kg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Acute kidney injury (AKI) is common in dogs. Few studies have assessed sequential changes in indices of kidney function in dogs with naturally occurring AKI. OBJECTIVE To document sequential changes of conventional indices of renal function, to better define the course of AKI, and to identify a candidate marker for recovery. ANIMALS Ten dogs with AKI. METHODS Dogs were prospectively enrolled and divided into surviving and nonsurviving dogs. Urine production was measured with a closed system for 7 days. One and 24-hour urinary clearances were performed daily to estimate solute excretion and glomerular filtration rate (GFR). Solute excretion was calculated as an excretion ratio (ER) and fractional clearance (FC) based on both the 1- and 24-hour urine collections. RESULTS Four dogs survived and 6 died. At presentation, GFR was not significantly different between the outcome groups, but significantly (P = .03) increased over time in the surviving, but not in the nonsurviving dogs. Fractional clearance of Na decreased significantly over time (20.2-9.4%, P < .0001) in the surviving, but not in the nonsurviving dogs. The ER and FC of solutes were highly correlated (r, 0.70-0.95). CONCLUSION AND CLINICAL IMPACT Excretion ratio might be used in the clinical setting as a surrogate marker to follow trends in solute excretion. Increased GFR, urine production, and decreased FC of Na were markers of renal recovery. The FC of Na is a simple, noninvasive, and cost-effective method that can be used to evaluate recovery of renal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic polymorphisms near IL28B are associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV), two processes that require the appropriate activation of the host immune responses. Intrahepatic inflammation is believed to mirror such activation, but its relationship with IL28B polymorphisms has yet to be fully appreciated. We analyzed the association of IL28B polymorphisms with histological and follow-up features in 2335 chronically HCV-infected Caucasian patients. Assessable phenotypes before any antiviral treatment included necroinflammatory activity (n = 1,098), fibrosis (n = 1,527), fibrosis progression rate (n = 1,312), and hepatocellular carcinoma development (n = 1,915). Associations of alleles with the phenotypes were evaluated by univariate analysis and multivariate logistic regression, accounting for all relevant covariates. The rare G allele at IL28B marker rs8099917-previously shown to be at risk of treatment failure-was associated with lower activity (P = 0.04), lower fibrosis (P = 0.02) with a trend toward lower fibrosis progression rate (P = 0.06). When stratified according to HCV genotype, most significant associations were observed in patients infected with non-1 genotypes (P = 0.003 for activity, P = 0.001 for fibrosis, and P = 0.02 for fibrosis progression rate), where the odds ratio of having necroinflammation or rapid fibrosis progression for patients with IL28B genotypes TG or GG versus TT were 0.48 (95% confidence intervals 0.30-0.78) and 0.56 (0.35-0.92), respectively. IL28B polymorphisms were not predictive of the development of hepatocellular carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PhIP carcinogenesis is initiated by N(2)-hydroxylation, mediated by several cytochromes P450, including CYP1A1. However, the role of CYP1A1 in PhIP metabolic activation in vivo is unclear. In this study, Cyp1a1-null and wild-type (WT) mice were used to investigate the potential role of CYP1A1 in PhIP metabolic activation in vivo. PhIP N(2)-hydroxylation was actively catalyzed by lung homogenates of WT mice, at a rate of 14.9 +/- 5.0 pmol/min/g tissue, but < 1 pmol/min/g tissue in stomach and small intestine, and almost undetectable in mammary gland and colon. PhIP N(2)-hydroxylation catalyzed by lung homogenates of Cyp1a1-null mice was approximately 10-fold lower than that of WT mice. In contrast, PhIP N(2)-hydroxylation activity in lung homogenates of Cyp1a2-null versus WT mice was not decreased. Pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased lung Cyp1a1 mRNA and lung homogenate PhIP N(2)-hydroxylase activity approximately 50-fold in WT mice, where the activity was substantially inhibited (70%) by monoclonal antibodies against CYP1A1. In vivo, 30 min after oral treatment with PhIP, PhIP levels in lung were similar to those in liver. After a single dose of 0.1 mg/kg [(14)C]PhIP, lung PhIP-DNA adduct levels in Cyp1a1-null mice, but not in Cyp1a2-null mice, were significantly lower (P=0.0028) than in WT mice. These results reveal that mouse lung has basal and inducible PhIP N(2)-hydroxylase activity predominantly catalyzed by CYP1A1. Because of the high inducibility of human CYP1A1, especially in cigarette smokers, the role of lung CYP1A1 in PhIP carcinogenesis should be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Due to their molecular weight, it is possible that the adipokines adiponectin, resistin and leptin accumulate when glomerular filtration rate (GFR) is decreased. In reduced renal clearance, altered serum concentrations of these proteins might affect cardiovascular risk. The objective of the study was to investigate the relationship between adipokine concentrations and GFR. METHODS: The association between GFR, as determined by the abbreviated MDRD equation, and the concentrations of the adipokines adiponectin, resistin and leptin was assessed in a cohort of coronary patients (n=538; 363 male, 165 female). After calculation of correlations between GFR and adipokine concentrations, the association was further assessed by analysis of covariance following adjustment for age, gender, BMI, presence of type 2 diabetes, presence of hypertension, history of smoking as well as for serum lipid concentrations. RESULTS: Mean GFR in our study population was 68.74+/-15.27 ml/min/1.73 m(2). 74.3% of the patients had a GFR >60 ml/min/1.73 m(2), 24% of the patients had a GFR between 30 and 60 ml/min/1.73 m(2), and 1.7% of the patients had a GFR <30 ml/min/1.73 m(2). There were significant inverse correlations between adiponectin (r=-0.372; p<0.001), resistin (r=-0.227; p<0.001) and leptin (r=-0.151; p=0.009) concentrations and GFR. After multivariate adjustment, the associations remained significant for adiponectin and resistin. Subgroup analysis in patients with GFR >60 ml/min/1.73 m(2) showed a significant correlation between GFR and adiponectin as well as leptin concentrations. However, after adjustment, these associations no longer were significant. CONCLUSIONS: There is an independent association between GFR and the serum concentrations of adiponectin and resistin. However, this association is not present at GFR >60 ml/min/1.73 m(2). This finding suggests that adipokine concentrations in mildly impaired and normal renal function are influenced by factors other than GFR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Starches are the major source of dietary glucose in weaned children and adults. However, small intestine alpha-glucogenesis by starch digestion is poorly understood due to substrate structural and chemical complexity, as well as the multiplicity of participating enzymes. Our objective was dissection of luminal and mucosal alpha-glucosidase activities participating in digestion of the soluble starch product maltodextrin (MDx). PATIENTS AND METHODS: Immunoprecipitated assays were performed on biopsy specimens and isolated enterocytes with MDx substrate. RESULTS: Mucosal sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) contributed 85% of total in vitro alpha-glucogenesis. Recombinant human pancreatic alpha-amylase alone contributed <15% of in vitro alpha-glucogenesis; however, alpha-amylase strongly amplified the mucosal alpha-glucogenic activities by preprocessing of starch to short glucose oligomer substrates. At low glucose oligomer concentrations, MGAM was 10 times more active than SI, but at higher concentrations it experienced substrate inhibition whereas SI was not affected. The in vitro results indicated that MGAM activity is inhibited by alpha-amylase digested starch product "brake" and contributes only 20% of mucosal alpha-glucogenic activity. SI contributes most of the alpha-glucogenic activity at higher oligomer substrate concentrations. CONCLUSIONS: MGAM primes and SI activity sustains and constrains prandial alpha-glucogenesis from starch oligomers at approximately 5% of the uninhibited rate. This coupled mucosal mechanism may contribute to highly efficient glucogenesis from low-starch diets and play a role in meeting the high requirement for glucose during children's brain maturation. The brake could play a constraining role on rates of glucose production from higher-starch diets consumed by an older population at risk for degenerative metabolic disorders.