18 resultados para L-lactate production

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic abnormalities during bacterial meningitis include hypoglycorrhachia and cerebrospinal fluid (CSF) lactate accumulation. The mechanisms by which these alterations occur within the central nervous system (CNS) are still incompletely delineated. To determine the evolution of these changes and establish the locus of abnormal metabolism during meningitis, glucose and lactate concentrations in brain interstitial fluid, CSF, and serum were measured simultaneously and sequentially during experimental pneumococcal meningitis in rabbits. Interstitial fluid samples were obtained from the frontal cortex and hippocampus by using in situ brain microdialysis, and serum and CSF were directly sampled. There was an increase of CSF lactate concentration, accompanied by increased local production of lactate in the brain, and a decrease of CSF-to-serum glucose ratio that was paralleled by a decrease in cortical glucose concentration. Brain microdialysate lactate concentration was not affected by either systemic lactic acidosis or artificially elevated CSF lactate concentration. These data support the hypothesis that the brain is a locus for anaerobic glycolysis during meningitis, resulting in increased lactate production and perhaps contributing to decreased tissue glucose concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rate of extra-hepatic lactate production and the route of influx of lactate to the liver may influence both hepatic and extra-hepatic lactate exchange. We assessed the dose-response of hepatic and extra-hepatic lactate exchange during portal and central venous lactate infusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury. We measured oxygen consumption (VO2) to determine what effects glucose, lactate, oxygen, and the combination of lactate and oxygen have on mitochondrial respiration in both injured and uninjured rat brain tissue. METHODS: Anesthetized Sprague-Dawley rats were intubated and ventilated with either 0.21 or 1.0 fraction of inspired oxygen (FIO2). Brain tissue from acute sham animals was subjected in vitro to 1.1 mM, 12 mM and 100 mM concentrations of glucose and L-lactate. In another group, injury (fluid percussion injury of 2.5 +/- 0.02 atmospheres) was induced over the left hemisphere. The VO2 of mug amounts of brain tissues were measured in a microrespirometry system (Cartesian diver). RESULTS: The VO2 was found to be independent of glucose concentrations, but dose-dependent for lactate. Moreover, the lactate dependent VO2s were all significantly higher than those generated by glucose. Injured rats on FIO2 0.21 had brain tissue VO2 rates that were significantly lower than those of shams or preinjury levels. In injured rats treated with FIO2 1.0, the reduction in VO2 levels was prevented. Injured rats that received an intravenous infusion of 100 mM lactate had VO2 rates that were significantly higher than those obtained with FIO2 1.0. Combined treatment further boosted the lactate generated VO2 rates by approximately 15%. CONCLUSION: Glucose sustains mitochondrial respiration at a low level "fixed" rate because, despite increasing its concentration nearly 100-fold, it cannot up-regulate VO2 after fluid percussion injury. Lactate produces a dose-dependent VO2 response, possibly enabling mitochondria to meet the increased energy needs of the injured brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. METHODS: In 69 patients with severe traumatic brain injury (TBI), cerebral metabolism was monitored by assessing changes in arterial and jugular venous blood at normocarbia (partial arterial pressure of carbon dioxide (paCO2) 4.4 to 5.6 kPa), normoxia (partial arterial pressure of oxygen (paO2) 9 to 20 kPa), stable haematocrit (27 to 36%), brain temperature 35 to 38 degrees C, and cerebral perfusion pressure (CPP) 70 to 90 mmHg. This resulted in a total of 43,896 values for glucose uptake, lactate release, oxygen extraction ratio (OER), carbon dioxide (CO2) and bicarbonate (HCO3) production, jugular venous oxygen saturation (SjvO2), oxygen-glucose index (OGI), lactate-glucose index (LGI) and lactate-oxygen index (LOI). Arterial blood glucose concentration-dependent influence was determined retrospectively by assessing changes in these parameters within pre-defined blood glucose clusters, ranging from less than 4 to more than 9 mmol/l. RESULTS: Arterial blood glucose significantly influenced signs of cerebral metabolism reflected by increased cerebral glucose uptake, decreased cerebral lactate production, reduced oxygen consumption, negative LGI and decreased cerebral CO2/HCO3 production at arterial blood glucose levels above 6 to 7 mmol/l compared with lower arterial blood glucose concentrations. At blood glucose levels more than 8 mmol/l signs of increased anaerobic glycolysis (OGI less than 6) supervened. CONCLUSIONS: Maintaining arterial blood glucose levels between 6 and 8 mmol/l appears superior compared with lower and higher blood glucose concentrations in terms of stabilised cerebral metabolism. It appears that arterial blood glucose values below 6 and above 8 mmol/l should be avoided. Prospective analysis is required to determine the optimal arterial blood glucose target in patients suffering from severe TBI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immunity. T-cell proliferation and differentiation to effector cells require increased glucose consumption, aerobic glycolysis and glutaminolysis. The effect of IDO on the above metabolic pathways was evaluated in alloreactive T-cells. Mixed lymphocyte reaction (MLR) in the presence or not of the IDO inhibitor, 1-DL-methyl-tryptophane (1-MT), was used. In MLRs, 1-MT decreased tryptophan consumption, increased cell proliferation, glucose influx and lactate production, whereas it decreased tricarboxylic acid cycle activity. In T-cells, from the two pathways that could sense tryptophan depletion, i.e. general control nonrepressed 2 (GCN2) kinase and mammalian target of rapamycin complex 1, 1-MT reduced only the activity of the GCN2 kinase. Additionally 1-MT treatment of MLRs altered the expression and/or the phosphorylation state of glucose transporter-1 and of key enzymes involved in glucose metabolism and glutaminolysis in alloreactive T-cells in a way that favors glucose influx, aerobic glycolysis and glutaminolysis. Thus in alloreactive T-cells, IDO through activation of the GCN2 kinase, decreases glucose influx and alters key enzymes involved in metabolism, decreasing aerobic glycolysis and glutaminolysis. Acting in such a way, IDO could be considered as a constraining factor for alloreactive T-cell proliferation and differentiation to effector T-cell subtypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The most important early pathomechanism in traumatic brain injury (TBI) is alteration of the resting membrane potential. This may be mediated via voltage, or agonist-dependent ion channels (e.g. glutamate-dependent channels). This may result in a consequent increase in metabolism with increased oxygen consumption, in order to try to restore ionic balance via the ATP-dependent pumps. We hypothesize that glutamate is an important agonist in this process and may induce an increase in lactate, potassium and brain tissue CO2, and hence a decrease in brain pH. Further we propose that an increase in lactate is thus not an indicator of anaerobic metabolic conditions as has been thought for many years. We therefore analyzed a total of 85 patients with TBI, Glasgow Coma Scale (GCS) < 8 using microdialysis, brain tissue oxygen, CO2 and pH monitoring. Cerebral blood flow studies (CBF) were performed to test the relationship between regional cerebral blood flow (rCBF) and the metabolic determinants. Glutamate was significantly correlated with lactate (p < 0.0001), potassium (p < 0.0001), brain tissue pH (p = 0.0005), and brain tissue CO2 (p = 0.006). rCBF was inversely correlated with glutamate, lactate and potassium. 44% of high lactate values were observed in brain with tissue oxygen values, above the threshold level for cell damage. These results support the hypothesis of a glutamate driven increase in metabolism, with secondary traumatic depolarization and possibly hyperglycolysis. Further, we demonstrate evidence for lactate production in aerobic conditions in humans after TBI. Finally, when reduced regional cerebral blood flow (rCBF) is observed, high dialysate glutamate, lactate and potassium values are usually seen, suggesting ischemia worsens these TBI-induced changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During a mammary immune response, the integrity of the blood-milk barrier is negatively affected and becomes leaky. The aim of the present study was to demonstrate the blood origin, and to investigate changes in the concentration, of various constituents including immunoglobulins in blood and milk during the early phase of lipopolysaccharide (LPS)-induced mastitis. Five lactating dairy cows received continuous β-hydroxybutyrate (BHBA) clamp infusions to maintain elevated BHBA blood concentrations (1.5 to 2.0 mmol/L) from 48 h before and 8h after LPS administration. One udder quarter was infused with 200 μg of Escherichia coli LPS. A second quarter served as control. Milk and blood samples were taken hourly for 8h postchallenge (PC). The somatic cell count in LPS-challenged quarters was increased from 4h PC to the end of the experiment compared with control quarters. In LPS-challenged quarters, l-lactate, BHBA, lactate dehydrogenase (LDH), IgG(1), and IgG(2) were increased at 3h PC and remained elevated until the end of experiment (8h PC) compared with control quarters. In addition, the optical density values in milk in a nonquantitative ELISA for antibodies directed against bluetongue virus (used as a measure of nonspecific antibody transfer; all animals were vaccinated) increased and, thus, indicates an increase in these antibodies in response to LPS treatment. l-Lactate concentration also increased in blood 2h PC and in the milk of control quarters during the experiment from 3h PC. A second experiment was conducted in vitro to investigate a possible contribution from destructed milk cells to l-lactate concentration and activity of LDH in milk. Aliquots of milk samples (n=8) were frozen (-20°C) or disrupted with ultrasound, respectively. Freeze thawing and ultrasound treatment increased LDH in milk samples, but had no effect on l-lactate concentrations. Results suggest that intramammary infusion of LPS induces a systemic response, as evidenced by an elevation of blood l-lactate concentration. The concomitant changes of all investigated components suggest that they were blood derived. However, the increase in blood components in the milk is not necessarily supportive of the mammary immune system, and likely a side effect of reduced blood-milk barrier integrity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mastitis induced by Escherichia coli is often characterized by severe clinical signs, indicating a more powerful combat of the immune system against the pathogen compared with Staphylococcus aureus infections, which are often represented by chronic and subclinical diseases. The aim of this study was to test the major pathogenic component lipopolysaccharide (LPS) from E. coli and lipoteichoic acid (LTA) from Staph. aureus for their effects on blood-milk barrier integrity and the related transfer of immunoglobulins and lactate from blood into milk. A similar somatic cell count (SCC) increase was achieved by intramammary challenge of 1 quarter of 5 cows with 20 µg of LTA, and 8 cows with 0.2 µg of LPS (maximum log SCC/mL: 7). Milk IgG(1) concentrations increased in LPS- but not in LTA-challenged quarters. Milk IgG(2) concentrations were increased in treated quarters at 3h after LPS, and 6h after LTA challenge. Higher maximum levels of IgG(2) were reached in milk of LPS-treated quarters (173 ± 58 μg/mL) than of LTA-challenged quarters (62 ± 13 μg/mL). Immunoglobulin G(1) and IgG(2) levels did not change in control quarters. l-Lactate concentrations in milk increased 4h after LPS and 5h after LTA challenge and reached higher maximum levels in LPS- (221 ± 48 mg/L) than in LTA-treated quarters (77 ± 18 mg/L). In conclusion, a mammary inflammation on a quantitatively similar level based on SCC increase achieves a more efficient transfer of blood components such as IgG(2) via the blood-milk barrier if induced by LPS from E. coli than by LTA from Staph. aureus. This pathogen-specific difference may play an important role in the cure rate of the respective intramammary infection, which is usually lower in Staph. aureus- than in E. coli-induced mastitis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Changes in hepatosplanchnic lactate exchange are likely to contribute to hyperlactatemia in sepsis. We hypothesized that septic and cardiogenic shock have different effects on hepatosplanchnic lactate exchange and its contribution to hyperlactatemia. Materials and Methods. 24 anesthetized pigs were randomized to fecal peritonitis (P), cardiac tamponade (CT), and to controls ( per group). Oxygen transport and lactate exchange were calculated during 24 hours. Results. While hepatic lactate influx increased in P and in CT, hepatic lactate uptake remained unchanged in P and decreased in CT. Hepatic lactate efflux contributed 20% (P) and 33% (CT), respectively, to whole body venous efflux. Despite maintained hepatic arterial blood flow, hepatic oxygen extraction did not increase in CT. Conclusions. Whole body venous lactate efflux is of similar magnitude in hyperdynamic sepsis and in cardiogenic shock. Although jejunal mucosal pCO2 gradients are increased, enhanced lactate production from other tissues is more relevant to the increased arterial lactate. Nevertheless, the liver fails to increase hepatic lactate extraction in response to rising hepatic lactate influx, despite maintained hepatic oxygen consumption. In cardiac tamponade, regional, extrasplanchnic lactate production is accompanied by hepatic failure to increase oxygen extraction and net hepatic lactate output, despite maintained hepatic arterial perfusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant survival during flooding relies on ethanolic fermentation for energy production. The available literature indicates that the first enzyme of the ethanolic fermentation pathway, pyruvate decarboxylase (PDC), is expressed at very low levels and is likely to be rate-limiting during oxygen deprivation. The authors expressed high levels of bacterial PDC in tobacco to study the modulation of PDC activity in vivo, and assess its impact on the physiology of ethanolic fermentation and survival under oxygen stress. In contrast to leaves, wild-type normoxic roots contained considerable PDC activity, and overexpression of the bacterial PDC caused only a moderate increase in acetaldehyde and ethanol production under anoxia compared to wild-type roots. No significant lactate production could be measured at any time, making it unlikely that lactate-induced acidification (LDH/PDC pH-stat) triggers the onset of ethanol synthesis. Instead, the authors favour a model in which the flux through the pathway is regulated by substrate availability. The increased ethanolic flux in the transgenics compared to the wild-type did not enhance anoxia tolerance. On the contrary, rapid utilisation of carbohydrate reserves enhanced premature cell death in the transgenics while replenishment of carbohydrates improved survival under anoxia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A survey was conducted to generate holistic information on the production and utilization of local white lupin in two lupin growing districts, namely, Mecha and Sekela, representing mid and high altitude areas, respectively in North-western Ethiopia. During the survey, two types of participatory rural appraisal (PRA) techniques, namely, individual farmer interview (61 farmers from Mecha and 51 from Sekela) and group discussion (with 20 farmers from each district) were employed. There are significant differences (P<0.05) between the two study districts for the variables like total land holding, frequency of ploughing during lupin planting, days to maturity, lupin productivity, and number of days of soaking lupin in running water. However, there are no significant differences (P>0.05) between the two study districts for the variables like land allocated for lupin cultivation, lupin seed rate, lupin soaking at home, lupin consumption per family per week and proportion of lupin used for household consumption. The use of the crop as livestock feed is negligible due to its high alkaloid content. It is concluded that the local white lupin in Ethiopia is a valuable multipurpose crop which is being cultivated in the midst of very serious shortage of cropland. Its ability to maintain soil fertility and serve as a source of food in seasons of food scarcity makes it an important crop. However, its bitter taste due to its high alkaloid content remains to be a big challenge and any lupin improvement strategy has to focus on minimizing the alkaloid content of the crop.