42 resultados para Innate

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invariant Natural Killer T cells (iNKT) are a versatile lymphocyte subset with important roles in both host defense and immunological tolerance. They express a highly conserved TCR which mediates recognition of the non-polymorphic, lipid-binding molecule CD1d. The structure of human iNKT TCRs is unique in that only one of the six complementarity determining region (CDR) loops, CDR3beta, is hypervariable. The role of this loop for iNKT biology has been controversial, and it is unresolved whether it contributes to iNKT TCR:CD1d binding or antigen selectivity. On the one hand, the CDR3beta loop is dispensable for iNKT TCR binding to CD1d molecules presenting the xenobiotic alpha-galactosylceramide ligand KRN7000, which elicits a strong functional response from mouse and human iNKT cells. However, a role for CDR3beta in the recognition of CD1d molecules presenting less potent ligands, such as self-lipids, is suggested by the clonal distribution of iNKT autoreactivity. We demonstrate that the human iNKT repertoire comprises subsets of greatly differing TCR affinity to CD1d, and that these differences relate to their autoreactive functions. These functionally different iNKT subsets segregate in their ability to bind CD1d-tetramers loaded with the partial agonist alpha-linked glycolipid antigen OCH and structurally different endogenous beta-glycosylceramides. Using surface plasmon resonance with recombinant iNKT TCRs and different ligand-CD1d complexes, we demonstrate that the CDR3beta sequence strongly impacts on the iNKT TCR affinity to CD1d, independent of the loaded CD1d ligand. Collectively our data reveal a crucial role for CDR3beta for the function of human iNKT cells by tuning the overall affinity of the iNKT TCR to CD1d. This mechanism is relatively independent of the bound CD1d ligand and thus forms the basis of an inherent, CDR3beta dependent functional hierarchy of human iNKT cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The review summarizes the recent progress that has been made in understanding the function of immunoglobulin A (IgA) in promoting a healthy mutualism with the commensal microbiota and protecting against pathogens. Although IgA is by far the most abundant antibody produced by mammals, direct experimental evidence for its function is still lacking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against pathogens and plays key roles in the activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. Pentraxins are essential constituents of the humoral arm of innate immunity and represent a superfamily of highly conserved acute phase proteins, traditionally classified into short and long pentraxins. Pentraxin 3 (PTX3) is the prototypic member of the long pentraxins subfamily. As opposed to C-reactive protein, whose sequence and regulation have not been conserved during evolution from mouse to man, the evolutionary conservation of sequence, gene organization and regulation of PTX3 has allowed addressing its pathophysiological roles in genetically modified mice, in diverse conditions, ranging from infections to sterile inflammation, angiogenesis and female fertility. Despite this conservation, a number of predominantly non-coding polymorphisms have been identified in the PTX3 gene which, when associated in particular haplotypes, have been shown to be relevant in clinical conditions including infection and fertility. Here we review the studies on PTX3, with emphasis on pathogen recognition, tissue remodelling and crosstalk with other components of the innate immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized pustular psoriasis (GPP) is a severe inflammatory disease characterized by recurrent eruptions of sterile pustules on erythematous skin. Although tumor necrosis factor (TNF) antagonists may lead to a rapid resolution of GPP, the mechanism of action of these agents remains to be investigated. Here, we sought to evaluate markers of immune response in the skin of a patient who experienced a rapid amelioration of GPP after treatment with infliximab and acitretin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthy individuals live in peaceful co-existence with an immense load of intestinal bacteria. This symbiosis is advantageous for both the host and the bacteria. For the host it provides access to otherwise undigestible nutrients and colonization resistance against pathogens. In return the bacteria receive an excellent nutrient habitat. The mucosal immune adaptations to the presence of this commensal intestinal microflora are manifold. Although bacterial colonization has clear systemic consequences, such as maturation of the immune system, it is striking that the mutualistic adaptive (T and B cells) and innate immune responses are precisely compartmentalized to the mucosal immune system. Here we summarize the mechanisms of mucosal immune compartmentalization and its importance for a healthy host-microbiota mutualism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deficient type I interferon-β and type III interferon-λ induction by rhinoviruses has previously been reported in mild/moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma (STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-β and interferon-λ mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate that this is a feature of STRA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of cell death is a key element in building up and maintaining both innate and adaptive immunity. A critical role in this process plays the tumor necrosis factor (TNF)/nerve growth factor (NGF) receptor family of death receptors. Recent work suggests that sialic acid binding immunoglobulin (Ig) -like lectins (Siglecs) are also empowered to transmit death signals, at least into myeloid cells. Strikingly, death induction by Siglecs is enhanced when cells are exposed to proinflammatory survival cytokines. Based on these recent insights, we hypothesize that at least some members of the Siglec family regulate immune responses via the activation of caspase-dependent and caspase-independent cell death pathways.