28 resultados para I COLLAGEN
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.
Resumo:
It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.
Resumo:
STUDY DESIGN: Ex vivo in vitro study evaluating a novel intervertebral disc/endplate culture system. OBJECTIVES: To establish a whole-organ intervertebral disc culture model for the study of disc degeneration in vitro, including the characterization of basic cell and organ function. SUMMARY OF BACKGROUND DATA: With current in vivo models for the study of disc and endplate degeneration, it remains difficult to investigate the complex disc metabolism and signaling cascades. In contrast, more controlled but simplified in vitro systems using isolated cells or disc fragments are difficult to culture due to the unconstrained conditions, with often-observed cell death or cell dedifferentiation. Therefore, there is a demand for a controlled culture model with preserved cell function that offers the possibility to investigate disc and endplate pathologies in a structurally intact organ. METHODS: Naturally constrained intervertebral disc/endplate units from rabbits were cultured in multi-well plates. Cell viability, metabolic activity, matrix composition, and matrix gene expression profile were monitored using the Live/Dead cell viability test (Invitrogen, Basel, Switzerland), tetrazolium salt reduction (WST-8), proteoglycan and deoxyribonucleic acid quantification assays, and quantitative polymerase chain reaction. RESULTS: Viability and organ integrity were preserved for at least 4 weeks, while proteoglycan and deoxyribonucleic acid content decreased slightly, and matrix genes exhibited a degenerative profile with up-regulation of type I collagen and suppression of collagen type II and aggrecan genes. Additionally, cell metabolic activity was reduced to one third of the initial value. CONCLUSIONS: Naturally constrained intervertebral rabbit discs could be cultured for several weeks without losing cell viability. Structural integrity and matrix composition were retained. However, the organ responded to the artificial environment with a degenerative gene expression pattern and decreased metabolic rate. Therefore, the described system serves as a promising in vitro model to study disc degeneration in a whole organ.
Resumo:
BACKGROUND AND AIMS: Heterotopic ossification (HO) is a pathological bone formation process in which ectopic bone is formed in soft tissue. The formation of bone depends on the expression of the osteoblast phenotype. Earlier studies have shown conflicting results on the expression of phenotype markers of cells originating from HO and normal bone. The hypothesis of the present study is that cells from HO show an altered expression of osteoblast-specific phenotype markers compared to normal osteoblasts. The aims of the study were to further characterize the expression of osteoblast phenotypemarkers and to provide a comparison with other study results. PATIENTS AND METHODS: Using an in vitro technique, reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and immunohistochemistry, we compared the phenotype gene expression (type I collagen, alkaline phosphatase, Cbfa-1, osteocalcin) of osteoblasts from resected HO and normal bone (iliac crest). RESULTS: Cells from HO expressed the osteoblast phenotype (type I collagen, alkaline phosphatase) but were characterized by a depleted osteocalcin expression. The expression of Cbfa-1 (osteocalcin transcription gene) showed a large variety in our study. Preoperative radiotherapy had no effect on phenotype expression in cells from HO. CONCLUSION: Our results provide a characterization of cells originating from HO and support the thesis of an impaired osteoblast differentiation underlying the formation of HO. The transcription axis from Cbfa-1 to osteocalcin could be involved in the pathogenesis of HO.
Resumo:
The synovium contains mesenchymal stem cells with chondrogenic potential. Although synovial and articular cartilage tissue develop from a common pool of mesenchymal cells, little is known about their genetic commonalities. In the present study, the mRNA levels for several cartilage-related proteins, namely, cartilage oligomeric matrix protein (COMP), Sox9, aggrecan, and collagen types I, II, IX, X, and XI, were measured using the real-time polymerase chain reaction. Our data reveal the synovium of calf metacarpal joints to physiologically express not only type I collagen but also COMP, Sox9, aggrecan, and collagen types X and XI. The mRNA levels for the latter five proteins lie between 2% and 15% of those in articular cartilage. We speculate that these genes are being expressed by chondroprogenitor cells, whose presence in the synovium reflects a common ontogenetic phase in the fetal development of this tissue and of articular cartilage.
Resumo:
We have investigated the influence of long-term confined dynamic compression and surface motion under low oxygen tension on tissue-engineered cell-scaffold constructs. Porous polyurethane scaffolds (8 mm x 4 mm) were seeded with bovine articular chondrocytes and cultured under normoxic (21% O(2)) or hypoxic (5% O(2)) conditions for up to 4 weeks. By means of our joint-simulating bioreactor, cyclic axial compression (10-20%; 0.5 Hz) was applied for 1 h daily with a ceramic ball, which simultaneously oscillated over the construct surface (+/-25 degrees; 0.5 Hz). Culture under reduced oxygen tension resulted in an increase in mRNA levels of type II collagen and aggrecan, whereas the expression of type I collagen was down-regulated at early time points. A higher glycosaminoglycan content was found in hypoxic than in normoxic constructs. Immunohistochemical analysis showed more intense type II and weaker type I collagen staining in hypoxic than in normoxic cultures. Type II collagen gene expression was slightly elevated after short-term loading, whereas aggrecan mRNA levels were not influenced by the applied mechanical stimuli. Of importance, the combination of loading and low oxygen tension resulted in a further down-regulation of collagen type I mRNA expression, contributing to the stabilization of the chondrocytic phenotype. Histological results confirmed the beneficial effect of mechanical loading on chondrocyte matrix synthesis. Thus, mechanical stimulation combined with low oxygen tension is an effective tool for modulating the chondrocytic phenotype and should be considered when chondrocytes or mesenchymal stem cells are cultured and differentiated with the aim of generating cartilage-like tissue in vitro.
Resumo:
OBJECTIVE: According to recent reports, the synovial membrane may contain mesenchymal stem cells with the potential to differentiate into chondrocytes under appropriate conditions. In order to assess the usefulness of synovium-derived progenitor cells for the purposes of cartilage tissue engineering, we explored their requirements for the expression of chondrocyte-specific genes after expansion in vitro. DESIGN: Mesenchymal progenitor cells were isolated from the synovial membranes of bovine shoulder joints and expanded in two-dimensions on plastic surfaces. They were then seeded either as micromass cultures or as single cells within alginate gels, which were cultured in serum-free medium. Under these three-dimensional conditions, chondrogenesis is known to be supported and maintained. Cell cultures were exposed either to bone morphogenetic protein-2 (BMP-2) or to isoforms of transforming growth factor-beta (TGF-beta). The levels of mRNA for Sox9, collagen types I and II and aggrecan were determined by RT-PCR. RESULTS: When transferred to alginate gel cultures, the fibroblast-like synovial cells assumed a rounded form. BMP-2, but not isoforms of TGF-beta, stimulated, in a dose-dependent manner, the production of messenger RNAs (mRNAs) for Sox9, type II collagen and aggrecan. Under optimal conditions, the expression levels of cartilage-specific genes were comparable to those within cultured articular cartilage chondrocytes. However, in contrast to cultured articular cartilage chondrocytes, synovial cells exposed to BMP-2 continued to express the mRNA for alpha1(I) collagen. CONCLUSIONS: This study demonstrates that bovine synovium-derived mesenchymal progenitor cells can be induced to express chondrocyte-specific genes. However, the differentiation process is not complete under the chosen conditions. The stimulation conditions required for full transformation must now be delineated.
Resumo:
Summary Changes of the bone formation marker PINP correlated positively with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis (GIO) who received 18-month treatment with teriparatide, but not with risedronate. These results support the use of PINP as a surrogate marker of bone strength in GIO patients treated with teriparatide. Introduction To investigate the correlations between biochemical markers of bone turnover and vertebral strength estimated by finite element analysis (FEA) in men with GIO. Methods A total of 92 men with GIO were included in an 18-month, randomized, open-label trial of teriparatide (20 μg/day, n = 45) and risedronate (35 mg/week, n = 47). High-resolution quantitative computed tomography images of the 12th thoracic vertebra obtained at baseline, 6 and 18 months were converted into digital nonlinear FE models and subjected to anterior bending, axial compression and torsion. Stiffness and strength were computed for each model and loading mode. Serum biochemical markers of bone formation (amino-terminal-propeptide of type I collagen [PINP]) and bone resorption (type I collagen cross-linked C-telopeptide degradation fragments [CTx]) were measured at baseline, 3 months, 6 months and 18 months. A mixed-model of repeated measures analysed changes from baseline and between-group differences. Spearman correlations assessed the relationship between changes from baseline of bone markers with FEA variables. Results PINP and CTx levels increased in the teriparatide group and decreased in the risedronate group. FEA-derived parameters increased in both groups, but were significantly higher at 18 months in the teriparatide group. Significant positive correlations were found between changes from baseline of PINP at 3, 6 and 18 months with changes in FE strength in the teriparatide-treated group, but not in the risedronate group. Conclusions Positive correlations between changes in a biochemical marker of bone formation and improvement of biomechanical properties support the use of PINP as a surrogate marker of bone strength in teriparatide-treated GIO patients.
Resumo:
Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.
Resumo:
The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.
Resumo:
BACKGROUND A newly developed collagen matrix (CM) of porcine origin has been shown to represent a potential alternative to palatal connective tissue grafts (CTG) for the treatment of single Miller Class I and II gingival recessions when used in conjunction with a coronally advanced flap (CAF). However, at present it remains unknown to what extent CM may represent a valuable alternative to CTG in the treatment of Miller Class I and II multiple adjacent gingival recessions (MAGR). The aim of this study was to compare the clinical outcomes following treatment of Miller Class I and II MAGR using the modified coronally advanced tunnel technique (MCAT) in conjunction with either CM or CTG. METHODS Twenty-two patients with a total of 156 Miller Class I and II gingival recessions were included in this study. Recessions were randomly treated according to a split-mouth design by means of MCAT + CM (test) or MCAT + CTG (control). The following measurements were recorded at baseline (i.e. prior to surgery) and at 12 months: Gingival Recession Depth (GRD), Probing Pocket Depth (PD), Clinical Attachment Level (CAL), Keratinized Tissue Width (KTW), Gingival Recession Width (GRW) and Gingival Thickness (GT). GT was measured 3-mm apical to the gingival margin. Patient acceptance was recorded using a Visual Analogue Scale (VAS). The primary outcome variable was Complete Root Coverage (CRC), secondary outcomes were Mean Root Coverage (MRC), change in KTW, GT, patient acceptance and duration of surgery. RESULTS Healing was uneventful in both groups. No adverse reactions at any of the sites were observed. At 12 months, both treatments resulted in statistically significant improvements of CRC, MRC, KTW and GT compared with baseline (p < 0.05). CRC was found at 42% of test sites and at 85% of control sites respectively (p < 0.05). MRC measured 71 ± 21% mm at test sites versus 90 ± 18% mm at control sites (p < 0.05). Mean KTW measured 2.4 ± 0.7 mm at test sites versus 2.7 ± 0.8 mm at control sites (p > 0.05). At test sites, GT values changed from 0.8 ± 0.2 to 1.0 ± 0.3 mm, and at control sites from 0.8 ± 0.3 to 1.3 ± 0.4 mm (p < 0.05). Duration of surgery and patient morbidity was statistically significantly lower in the test compared with the control group respectively (p < 0.05). CONCLUSIONS The present findings indicate that the use of CM may represent an alternative to CTG by reducing surgical time and patient morbidity, but yielded lower CRC than CTG in the treatment of Miller Class I and II MAGR when used in conjunction with MCAT.
Resumo:
OBJECTIVE To clinically evaluate the treatment of Miller Class I and II multiple adjacent gingival recessions using the modified coronally advanced tunnel technique combined with a newly developed bioresorbable collagen matrix of porcine origin. METHOD AND MATERIALS Eight healthy patients exhibiting at least three multiple Miller Class I and II multiple adjacent gingival recessions (a total of 42 recessions) were consecutively treated by means of the modified coronally advanced tunnel technique and collagen matrix. The following clinical parameters were assessed at baseline and 12 months postoperatively: full mouth plaque score (FMPS), full mouth bleeding score (FMBS), probing depth (PD), recession depth (RD), recession width (RW), keratinized tissue thickness (KTT), and keratinized tissue width (KTW). The primary outcome variable was complete root coverage. RESULTS Neither allergic reactions nor soft tissue irritations or matrix exfoliations occurred. Postoperative pain and discomfort were reported to be low, and patient acceptance was generally high. At 12 months, complete root coverage was obtained in 2 out of the 8 patients and 30 of the 42 recessions (71%). CONCLUSION Within their limits, the present results indicate that treatment of Miller Class I and II multiple adjacent gingival recessions by means of the modified coronally advanced tunnel technique and collagen matrix may result in statistically and clinically significant complete root coverage. Further studies are warranted to evaluate the performance of collagen matrix compared with connective tissue grafts and other soft tissue grafts.
Resumo:
For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.
Resumo:
OBJECTIVES: To histologically assess the effectiveness of a porcine-derived collagen matrix (CM) and a subepithelial connective tissue graft (CTG) for the coverage of single mucosal recessions at osseointegrated dental implants. MATERIALS AND METHODS: Chronic-type mucosal Miller Class I-like recessions (mean clinical defect height: 0.67 ± 0.33-1.16 ± 0.19 mm) were established at the buccal aspect of titanium implants with platform switch in six beagle dogs. The defects were randomly allocated to either (1) coronally advanced flap surgery (CAF) + CM, (2) CAF + CTG or (3) CAF alone. At 12 weeks, histomorphometrical measurements were made (e.g.) between the implant shoulder (IS) and the mucosal margin (PM) and IS and the outer contour of the adjacent soft tissue (mucosal thickness [MT]). RESULTS: All treatment procedures investigated were associated with an almost complete soft tissue coverage of the defect area (i.e. coronal positioning of PM relative to IS). Mean IS-PM and MT values tended to be increased in both CAF + CM (1.04 ± 0.74 mm/0.71 ± 0.55 mm) and CAF + CTG (0.88 ± 1.23 mm/0.62 ± 0.66 mm) groups when compared with CAF (0.16 ± 0.28 mm/0.34 ± 0.23 mm) alone. These differences, however, did not reach statistical significance. CONCLUSIONS: Within the limits of this pilot study, it was concluded that all treatment procedures investigated were effective in covering soft tissue recessions at titanium implants.
Resumo:
Introduction The aim of this study was to clinically assess the capacity of a novel bovine pericardium based, non-cross linked collagen matrix in root coverage. Methods 62 gingival recessions of Miller class I or II were treated. The matrix was adapted underneath a coronal repositioned split thickness flap. Clinical values were assessed at baseline and after six months. Results The mean recession in each patient was 2.2 mm at baseline. 6 Months after surgery 86.7% of the exposed root surfaces were covered. On average 0,3 mm of recession remained. The clinical attachment level changed from 3.5 ± 1.3 mm to 1,8 ( ± 0,7) mm during the observational time period. No statistically significant difference was found in the difference of probing depth. An increase in the width of gingiva was significant. With a baseline value of 1.5 ± 0.9 mm an improvement of 2.4 ± 0.8 mm after six month could be observed. 40 out of 62 recessions were considered a thin biotype at baseline. After 6 months all 62 sites were assessed thick. Conclusions The results demonstrate the capacity of the bovine pericardium based non-cross linked collagen matrix for successful root coverage. This material was able to enhance gingival thickness and the width of keratinized gingiva. The percentage of root coverage achieved thereby is comparable to existing techniques. This method might contribute to an increase of patient's comfort and an enhanced aesthetical outcome.