14 resultados para Human health
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Resumo:
Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.
Resumo:
Pork occupies an important place in the diet of the population of Nagaland, one of the North East Indian states. We carried out a pilot study along the pork meat production chain, from live animal to end consumer. The goal was to obtain information about the presence of selected food borne hazards in pork in order to assess the risk deriving from these hazards to the health of the local consumers and make recommendations for improving food safety. A secondary objective was to evaluate the utility of risk-based approaches to food safety in an informal food system. We investigated samples from pigs and pork sourced at slaughter in urban and rural environments, and at retail, to assess a selection of food-borne hazards. In addition, consumer exposure was characterized using information about hygiene and practices related to handling and preparing pork. A qualitative hazard characterization, exposure assessment and hazard characterization for three representative hazards or hazard proxies, namely Enterobacteriaceae, T. solium cysticercosis and antibiotic residues, is presented. Several important potential food-borne pathogens are reported for the first time including Listeria spp. and Brucella suis. This descriptive pilot study is the first risk-based assessment of food safety in Nagaland. We also characterise possible interventions to be addressed by policy makers, and supply data to inform future risk assessments.
Resumo:
Listeria (L.) monocytogenes is widely distributed in the environment, but also has the ability to cause serious invasive disease in ruminants and humans. This review provides an overview of listeriosis in ruminants and discusses our insufficient understanding of reservoirs and possible cycling ofL. monocytogenes between animal and human hosts, food and the environment. It indicates gaps in our knowledge of the role of genetic subtypes in L. monocytogenes ecology and virulence as well as risk factors, in vivo diagnostics and pathogenesis of listeriosis in ruminants. Filling these gaps will contribute to improving the control of L. monocytogenes and enhancing disease prevention. As the prevalence of listeriosis in ruminants in Switzerland is likely to be underestimated, propositions concerning improvement options for surveillance of listeriosis in ruminants are provided.
Resumo:
The value of wildlife has long been ignored or under-rated. However, growing concerns about biodiversity loss and emerging diseases of wildlife origin have enhanced debates about the importance of wildlife. Wildlife-related diseases are viewed through these debates as a potential threat to wildlife conservation and domestic animal and human health. This article provides an overview of the values we place on wildlife (positive: socio-cultural, nutritional, economic, ecological; and negative: damages, health issues) and of the significance of diseases for biodiversity conservation. It shows that the values of wildlife, the emergence of wildlife diseases and biodiversity conservation are closely linked. The article also illustrates why investigations into wildlife diseases are now recognized as an integral part of global health issues. The modern One Health concept requires multi-disciplinary research groups including veterinarians, human physicians, ecologists and other scientists collaborating towards a common goal: prevention of disease emergence and preservation of ecosystems, both of which are essential to protect human life and well-being.
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.
Resumo:
In mammals milk is the principal nutrient for neonates at birth. The basic milk composition is similar between different mammals, but the content of individual constituents such as lipids may differ significantly from one species to another. The milk fat fraction is mainly composed of triglycerides which account for more than 95% of the lipids found in human and bovine milk. Though sterols and in particular cholesterol, the predominant milk sterol, represent less than 0.5% of the total milk lipid fraction, they are of ultimate importance for biological processes such as the formation of biological membranes or as precursors for steroid hormone synthesis. Cholesterol found in milk originates either from blood uptake or from local synthesis. This chapter provides an overview of cholesterol exchanges between the blood, the mammary tissue and the milk. The current knowledge on the expression, localization and function of candidate cholesterol transporters in mammary tissues of human, murine and bovine origin is summarized. Different mechanisms of how cholesterol can be transferred via the mammary tissue into milk, and which active cholesterol transporters are likely to play a role in this process will be discussed.
Resumo:
BACKGROUND: Although brucellosis (Brucella spp.) and Q Fever (Coxiella burnetii) are zoonoses of global importance, very little high quality data are available from West Africa. METHODS/PRINCIPAL FINDINGS: A serosurvey was conducted in Togo's main livestock-raising zone in 2011 in 25 randomly selected villages, including 683 people, 596 cattle, 465 sheep and 221 goats. Additionally, 464 transhumant cattle from Burkina Faso were sampled in 2012. The serological analyses performed were the Rose Bengal Test and ELISA for brucellosis and ELISA and the immunofluorescence assay (IFA) for Q Fever Brucellosis did not appear to pose a major human health problem in the study zone, with only 7 seropositive participants. B. abortus was isolated from 3 bovine hygroma samples, and is likely to be the predominant circulating strain. This may explain the observed seropositivity amongst village cattle (9.2%, 95%CI:4.3-18.6%) and transhumant cattle (7.3%, 95%CI:3.5-14.7%), with an absence of seropositive small ruminants. Exposure of livestock and people to C. burnetii was common, potentially influenced by cultural factors. People of Fulani ethnicity had greater livestock contact and a significantly higher seroprevalence than other ethnic groups (Fulani: 45.5%, 95%CI:37.7-53.6%; non-Fulani: 27.1%, 95%CI:20.6-34.7%). Appropriate diagnostic test cut-off values in endemic settings requires further investigation. Both brucellosis and Q Fever appeared to impact on livestock production. Seropositive cows were more likely to have aborted a foetus during the previous year than seronegative cows, when adjusted for age. This odds was 3.8 times higher (95%CI: 1.2-12.1) for brucellosis and 6.7 times higher (95%CI: 1.3-34.8) for Q Fever. CONCLUSIONS: This is the first epidemiological study of zoonoses in Togo in linked human and animal populations, providing much needed data for West Africa. Exposure to Brucella and C. burnetii is common but further research is needed into the clinical and economic impact.
Resumo:
In a fast changing world with growing concerns about biodiversity loss and an increasing number of animal and human diseases emerging from wildlife, the need for effective wildlife health investigations including both surveillance and research is now widely recognized. However, procedures applicable to and knowledge acquired from studies related to domestic animal and human health can be on partly extrapolated to wildlife. This article identifies requirements and challenges inherent in wildlife health investigations, reviews important definitions and novel health investigation methods, and proposes tools and strategies for effective wildlife health surveillance programs. Impediments to wildlife health investigations are largely related to zoological, behavioral and ecological characteristics of wildlife populations and to limited access to investigation materials. These concerns should not be viewed as insurmountable but it is imperative that they are considered in study design, data analysis and result interpretation. It is particularly crucial to remember that health surveillance does not begin in the laboratory but in the fields. In this context, participatory approaches and mutual respect are essential. Furthermore, interdisciplinarity and open minds are necessary because a wide range of tools and knowledge from different fields need to be integrated in wildlife health surveillance and research. The identification of factors contributing to disease emergence requires the comparison of health and ecological data over time and among geographical regions. Finally, there is a need for the development and validation of diagnostic tests for wildlife species and for data on free-ranging population densities. Training of health professionals in wildlife diseases should also be improved. Overall, the article particularly emphasizes five needs of wildlife health investigations: communication and collaboration; use of synergies and triangulation approaches; investments for the long term; systematic collection of metadata; and harmonization of definitions and methods.
Resumo:
Due to the constant expansion within the nanotechnology industry in the last decade, nanomaterials are omnipresent in society today. Nanotechnology-based products have numerous different applications ranging from electronic (e.g., advanced memory chips) to industrial (e.g., coatings or composites) to biomedical (e.g., drug delivery systems, diagnostics). Although these new nanomaterials can be found in many "everyday" products, their effects on the human body have still to be investigated in order to identify not only their risk, but also their potential benefits towards human health. Since the lung is commonly thought to be the main portal of entry into the human body for nanomaterials released within the environment, this review will attempt to summarise the current knowledge and understanding of how nanomaterials interact with the respiratory tract. Furthermore, the advantages and disadvantages of different experimental model systems that are commonly used to study this exposure route to the human body will be discussed.
Resumo:
Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment.
Resumo:
Recent changes in sanitary policies within the European Union (EU) concerning disposal of carcasses of domestic animals and the increase of non-natural mortality factors, such as illegal poisoning, are threatening European vultures. However, the effects of anthropogenic activities on demographic parameters are poorly studied. Using a long-term study (1994–2011) of the threatened Pyrenean Bearded Vulture Gypaetus barbatus population, we assess the variation in the proportion of breeding pairs, egg-laying dates, clutch size, breeding success, and survival following a sharp reduction in food availability in 2005 due to the application of restrictive sanitary policies decreasing livestock carcass availability. We found a delay in laying dates and a regressive trend in clutch size, breeding success, and survival following policy change. The maintenance of specific supplementary feeding stations for Bearded Vultures probably reduced the negative effects of illegal poisoning and food shortages, which mainly affected subadult survival. A drop in food availability may have produced changes in demographic parameters and an increase in mortality due to an increased exposure to contaminated food. As a result, supplementary feeding as a precautionary measure can be a useful tool to reduce illegal poisoning and declines in demographic parameters until previous food availability scenarios are achieved. This study shows how anthropogenic activities through human health regulations that affect habitat quality can suddenly modify demographic parameters in long-lived species, including those, such as survival, with high sensitivity to population growth rate.