36 resultados para Cyclin-Dependent Kinase 4

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that glucocorticoids accelerate lung development by limiting alveolar formation resulting from a premature maturation of the alveolar septa. Based on these data, the aim of the present work was to analyze the influence of dexamethasone on cell cycle control mechanisms during postnatal lung development. Cell proliferation is regulated by a network of signaling pathways that converge to the key regulator of cell cycle machinery: the cyclin-dependent kinase (CDK) system. The activity of the various cyclin/CDK complexes can be modulated by the levels of the cyclins and their CDKs, and by expression of specific CDK inhibitors (CKIs). In the present study, newborn rats were given a 4-d treatment with dexamethasone (0.1-0.01 microg/g body weight dexamethasone sodium phosphate daily on d 1-4), or saline. Morphologically, the treatment caused a significant thinning of the septa and an acceleration of lung maturation on d 4. Study of cyclin/CDK system at d 1-36 documented a transient down-regulation of cyclin/CDK complex activities at d 4 in the dexamethasone-treated animals. Analysis of the mechanisms involved suggested a role for the CKIs p21CIP1 and p27KIP1. Indeed, we observed an increase in p21CIP1 and p27KIP1 protein levels on d 4 in the dexamethasone-treated animals. By contrast, no variations in either cyclin and CDK expression, or cyclin/CDK complex formation could be documented. We conclude that glucocorticoids may accelerate lung maturation by influencing cell cycle control mechanisms, mainly through impairment of G1 cyclin/CDK complex activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposarcoma (LS) represents one of the most common soft tissue sarcomas. There are three major subtypes, namely, well/dedifferentiated, myxoid/round cell and pleomorphic LS. In general, LS is known to be a relatively chemo-resistant sarcoma subtype with the exception of the myxoid variant. Conventional chemotherapy with doxorubicin and ifosfamide represents the mainstay of systemic treatment in the first line. Other active cytotoxic agents include gemcitabine and docetaxel and the marine-derived compounds trabectedin. Recent progress in molecular diagnostics of each single LS subtype has improved the knowledge of the molecular characteristics and has led to two recent treatment targets: the amplification of mouse double minute 2 homolog and cyclin-dependent kinase-4 in well- and dedifferentiated LS. Thus far, only early-phase trials are reported and no new drugs have been introduced in daily clinical practice. The focus of this review is on current systemic treatment options, including novel strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Testicular tumours are relatively uncommon in infants and children, accounting for only 1-2% of all paediatric solid tumours. Of these approximately 1.5% are Leydig-cell tumours. Further, activating mutations of the luteinizing hormone receptor gene (LHR), as well as of the G protein genes, such as Gsalpha (gsp) and Gialpha (gip2) subunits, and cyclin-dependent kinase gene 4(CDK4) have been associated with the development of several endocrine neoplasms. AIMS/METHODS: In this report, the clinical variability of Leydig-cell tumours in four children is described. The LHR-, gsp-, gip2- and CDK4 genes were investigated to establish the possible molecular pathogenesis of the variable phenotype of the Leydig-cell tumours. RESULTS: No activating mutations in these genes were found in the four Leydig-cell tumours studied. Therefore, the absence of activating mutations in LHR, as well as in both the 'hot spot' regions for activating mutations within the G-alpha subunits and in the regulatory 'hot spot' on the CDK4 genes in these tumours indicates molecular heterogeneity among Leydig-cell tumours. CONCLUSION: Four children with a variable phenotype caused by Leydig-cell tumours are described. A molecular analysis of all the 'activating' genes and mutational regions known so far was performed, but no abnormalities were found. The lessons learnt from these clinically variable cases are: perform ultrasound early and most importantly, consider discrepancies between testicular swelling, tumour size and androgen production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General transcription factor IIH (TFIIH) consists of nine sub- units: cyclin-dependent kinase 7 (Cdk7), cyclin H and MAT1 (forming the Cdk-activating-kinase or CAK complex), the two helicases Xpb/Hay and Xpd, and p34, p44, p52 and p62 (refs 1–3). As the kinase subunit of TFIIH, Cdk7 participates in basal transcription by phosphorylating the carboxy-terminal domain of the largest subunit of RNA polymerase II1,4,5. As part of CAK, Cdk7 also phosphorylates other Cdks, an essential step for their activation6–9. Here we show that the Drosophila TFIIH com- ponent Xpd negatively regulates the cell cycle function of Cdk7, the CAK activity. Excess Xpd titrates CAK activity, resulting in decreased Cdk T-loop phosphorylation, mitotic defects and lethality, whereas a decrease in Xpd results in increased CAK activity and cell proliferation. Moreover, Xpd is downregulated at the beginning of mitosis when Cdk1, a cell cycle target of Cdk7, is most active. Downregulation of Xpd thus seems to contribute to the upregulation of mitotic CAK activity and to regulate mitotic progression positively. Simultaneously, the downregulation of Xpd might be a major mechanism of mitotic silencing of basal transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated here the effects of S2T1-6OTD, a novel telomestatin derivative that is synthesized to target G-quadruplex-forming DNA sequences, on a representative panel of human medulloblastoma (MB) and atypical teratoid/rhabdoid (AT/RT) childhood brain cancer cell lines. S2T1-6OTD proved to be a potent c-Myc inhibitor through its high-affinity physical interaction with the G-quadruplex structure in the c-Myc promoter. Treatment with S2T1-6OTD reduced the mRNA and protein expressions of c-Myc and hTERT, which is transcriptionally regulated by c-Myc, and decreased the activities of both genes. In remarkable contrast to control cells, short-term (72-hour) treatment with S2T1-6OTD resulted in a dose- and time-dependent antiproliferative effect in all MB and AT/RT brain tumor cell lines tested (IC(50), 0.25-0.39 micromol/L). Under conditions where inhibition of both proliferation and c-Myc activity was observed, S2T1-6OTD treatment decreased the protein expression of the cell cycle activator cyclin-dependent kinase 2 and induced cell cycle arrest. Long-term treatment (5 weeks) with nontoxic concentrations of S2T1-6OTD resulted in a time-dependent (mainly c-Myc-dependent) telomere shortening. This was accompanied by cell growth arrest starting on day 28 followed by cell senescence and induction of apoptosis on day 35 in all of the five cell lines investigated. On in vivo animal testing, S2T1-6OTD may well represent a novel therapeutic strategy for childhood brain tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic expression of A20, including in hepatocytes, increases in response to injury, inflammation and resection. This increase likely serves a hepatoprotective purpose. The characteristic unfettered liver inflammation and necrosis in A20 knockout mice established physiologic upregulation of A20 as integral to the anti-inflammatory and anti-apoptotic armamentarium of hepatocytes. However, the implication of physiologic upregulation of A20 in modulating hepatocytes' proliferative responses following liver resection remains controversial. To resolve the impact of A20 on hepatocyte proliferation and the liver's regenerative capacity, we examined whether decreased A20 expression, as in A20 heterozygous knockout mice, affects outcome following two-third partial hepatectomy. A20 heterozygous mice do not demonstrate a striking liver phenotype, indicating that their A20 expression levels are still sufficient to contain inflammation and cell death at baseline. However, usually benign partial hepatectomy provoked a staggering lethality (>40%) in these mice, uncovering an unsuspected phenotype. Heightened lethality in A20 heterozygous mice following partial hepatectomy resulted from impaired hepatocyte proliferation due to heightened levels of cyclin-dependent kinase inhibitor, p21, and deficient upregulation of cyclins D1, E and A, in the context of worsened liver steatosis. A20 heterozygous knockout minimally affected baseline liver transcriptome, mostly circadian rhythm genes. Nevertheless, this caused differential expression of >1000 genes post hepatectomy, hindering lipid metabolism, bile acid biosynthesis, insulin signaling and cell cycle, all critical cellular processes for liver regeneration. These results demonstrate that mere reduction of A20 levels causes worse outcome post hepatectomy than full knockout of bona fide liver pro-regenerative players such as IL-6, clearly ascertaining A20's primordial role in enabling liver regeneration. Clinical implications of these data are of utmost importance as they caution safety of extensive hepatectomy for donation or tumor in carriers of A20/TNFAIP3 single nucleotide polymorphisms alleles that decrease A20 expression or function, and prompt the development of A20-based liver pro-regenerative therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In chick embryo fibroblasts, the mRNA for extracellular matrix protein tenascin-C is induced 2-fold by cyclic strain (10%, 0.3 Hz, 6 h). This response is attenuated by inhibiting Rho-dependent kinase (ROCK). The RhoA/ROCK signaling pathway is primarily involved in actin dynamics. Here, we demonstrate its crucial importance in regulating tenascin-C expression. Cyclic strain stimulated RhoA activation and induced fibroblast contraction. Chemical activators of RhoA synergistically enhanced the effects of cyclic strain on cell contractility. Interestingly, tenascin-C mRNA levels perfectly matched the extent of RhoA/ROCK-mediated actin contraction. First, RhoA activation by thrombin, lysophosphatidic acid, or colchicine induced tenascin-C mRNA to a similar extent as strain. Second, RhoA activating drugs in combination with cyclic strain caused a super-induction (4- to 5-fold) of tenascin-C mRNA, which was again suppressed by ROCK inhibition. Third, disruption of the actin cytoskeleton with latrunculin A abolished induction of tenascin-C mRNA by chemical RhoA activators in combination with cyclic strain. Lastly, we found that myosin II activity is required for tenascin-C induction by cyclic strain. We conclude that RhoA/ROCK-controlled actin contractility has a mechanosensory function in fibroblasts that correlates directly with tenascin-C gene expression. Previous RhoA/ROCK activation, either by chemical or mechanical signals, might render fibroblasts more sensitive to external tensile stress, e.g., during wound healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To review the evidence implicating the deregulation of cyclin D1 in the pathogenesis of non-small cell lung cancer (NSCLC), and to discuss the opportunities for targeted clinical intervention. METHODS: Data published until June 2006 are summarized, and previously unpublished results from our own research are included. RESULTS: In normal cells, cyclin D1 complexes with and activates cyclin-dependent kinases (CDK) and acts as a transcriptional regulator. The protein is frequently overexpressed in a wide range of cancers, sometimes coincident with CCND1 (cyclin D1) gene amplification (5-20% of tumours). A low level of somatic mutations have been seen in certain tumours. CCND1 is amplified in NSCLC and cyclin D1 is frequently overexpressed in tumours and pre-invasive bronchial lesions, generally from one parental allele. Mutation analyses revealed a frequent CCND1 gene polymorphism (A870G) that modulates alternative splicing and allows expression of an alternative cyclin D1 transcript (transcript cyclin D1b). The encoded cyclin D1b protein lacks a specific phosphorylation site required for nuclear export. Genotype has been correlated with the risk and/or severity of disease or drug response across a range of malignancies, including lung cancer. Together, these findings suggest a strong pathological role for cyclin D1 deregulation in bronchial neoplasia. CONCLUSION: Current data indicate that cyclin D1 overexpression is not a consequence of, but rather a pivotal element in the process of malignant transformation in the lung and other tissues. This understanding may open new avenues for lung cancer diagnosis, treatment and prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Mitochondrial respiration is impaired during endotoxemia. While catecholamines are frequently used in sepsis, their effects on mitochondrial function are controversial. We assessed effects of dobutamine and dopamine endotoxin on isolated muscle mitochondria. MATERIALS AND METHODS: Sternocleidomastoid muscle mitochondria were isolated from six anesthetized pigs. Each sample was divided into six different groups. Three groups were incubated with endotoxin, three with vehicle. After 1 h, dopamine and dobutamine at final concentrations of 100 microM were added to the vehicle and endotoxin groups. After 2 h, state 3 and 4 respiration rates were determined for all mitochondrial complexes. Oxygen consumption was determined with a Clark-type electrode. RESULTS: Endotoxin increased glutamate-dependent state 4 respiration from 9.3 +/- 3.6 to 31.9 +/- 9.1 (P = 0.001) without affecting state 3 respiration. This reduced the efficiency of mitochondrial respiration (RCR; state 3/state 4, 9.9 +/- 1.9 versus 3.6 +/- 0.6; P < 0.001). The other complexes were unaffected. Catecholamine partially restored the endotoxin-induced increase in complex I state 4 respiration rate (31.9 +/- 9.1 versus 17.1 +/- 6.4 and 20.1 +/- 12.2) after dopamine and dobutamine, respectively (P = 0.007), and enhanced the ADP:O ratio (P = 0.033). CONCLUSIONS: Dopamine and dobutamine enhanced the efficiency of mitochondrial respiration after short-term endotoxin exposure.