11 resultados para Chitosan

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of nanogel encapsulation of recombinant NcPDI (recNcPDI) following vaccination of mice by intranasal or intraperitoneal routes and challenge infection with Neospora caninum tachyzoites were investigated. Nanogels were chitosan based, with an alginate or alginate-mannose surface. None of the mice receiving recNcPDI intraperitoneal (i.p.) (without nanogels) survived, whereas intranasal (i.n.) application protected 9 of 10 mice from disease. Association of recNcPDI with nanogels improved survival of i.p. vaccinated mice, but nanogels without recNcPDI gave similar protection levels. When nanogels were inoculated via the i.n. route, 80% of the mice were protected. Association of recNcPDI with the alginate-coated nanogels protected all mice against disease. Quantification of the cerebral parasite burden showed a significant reduction of parasite numbers in most experimental groups vaccinated i.n., except those vaccinated with alginate-mannose nanogels with or without recNcPDI. For i.p. vaccinated groups, no significant differences in cerebral infection densities were measured, but there was a reduction in the groups vaccinated with recNcPDI associated with both types of nanogels. Analysis of the immune responses of infected mice indicated that association of recNcPDI with nanogels altered the patterns of cytokine mRNA expression profiles, but had no major impact on the antibody subtype responses. Nevertheless, this did not necessarily relate to the protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin is a notable anti-erosive agent, and the biopolymer chitosan has also shown demineralisation-inhibiting properties. Therefore, the anti-erosive/anti-abrasive efficacy of the combination of both compounds was tested under in situ conditions. Twenty-seven volunteers were included in a randomised, double-blind, three-cell crossover in situ trial. Enamel specimens were recessed on the buccal aspects of mandibular appliances, extraorally demineralised (6 × 2 min/day) and intraorally treated with toothpaste slurries (2 × 2 min/day). Within the slurry treatment time, one-half of the specimens received additional intraoral brushing (5 s, 2.5 N). The tested toothpastes included a placebo toothpaste, an experimental NaF toothpaste (1,400 ppm F(-)) and an experimental F/Sn/chitosan toothpaste (1,400 ppm F(-), 3,500 ppm Sn(2+), 0.5% chitosan). The percentage reduction of tissue loss (slurry exposure/slurry exposure + brushing) compared to placebo was 19.0 ± 47.3/21.3 ± 22.4 after use of NaF and 52.5 ± 30.9/50.2 ± 34.3 after use of F/Sn/chitosan. F/Sn/chitosan was significantly more effective than NaF (p ≤ 0.001) and showed good efficacy against erosive and erosive-abrasive tissue loss. This study suggests that the F/Sn/chitosan toothpaste could provide good protection for patients who frequently consume acidic foodstuffs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES It is well known that Sn(2+) is a notable anti-erosive agent. There are indications that biopolymers such as chitosan can enhance the effect of Sn(2+), at least in vitro. However, little information exists about their anti-erosive/anti-abrasive in situ effects. In the present in situ study, the efficacy of Sn(2+)-containing toothpastes in the presence or absence of chitosan was tested. METHODS Ten subjects participated in the randomised crossover study, wearing mandibular appliances with human enamel specimens. Specimens were extraorally demineralised (7 days, 0.5 % citric acid, pH 2.6; 6 × 2 min/day) and intraorally exposed to toothpaste suspensions (2 × 2 min/day). Within the suspension immersion time, one half of the specimens were additionally brushed intraorally with a powered toothbrush (5 s, 2.5 N). Tested preparations were a placebo toothpaste (negative control), two experimental toothpastes (F/Sn = 1,400 ppm F(-), 3,500 ppm Sn(2+); F/Sn/chitosan = 1,400 ppm F(-), 3,500 ppm Sn(2+), 0.5 % chitosan) and an SnF2-containing gel (positive control, GelKam = 3,000 ppm Sn(2+), 1,000 ppm F(-)). Substance loss was quantified profilometrically (μm). RESULTS In the placebo group, tissue loss was 11.2 ± 4.6 (immersion in suspension) and 17.7 ± 4.7 (immersion in suspension + brushing). Immersion in each Sn(2+)-containing suspension significantly reduced tissue loss (p ≤ 0.01); after immersion in suspension + brushing, only the treatments with GelKam (5.4 ± 5.5) and with F/Sn/chitosan (9.6 ± 5.6) significantly reduced loss [both p ≤ 0.05 compared to placebo; F/Sn 12.8 ± 6.4 (not significant)] CONCLUSION Chitosan enhanced the efficacy of the Sn(2+)-containing toothpaste as an anti-erosive/anti-abrasive agent. CLINICAL RELEVANCE The use of Sn(2+)- and chitosan-containing toothpaste is a good option for symptomatic therapy in patients with regular acid impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The aim of this study was to assess the preventive effect of a fluoride-, stannous- and chitosan-containing (F/Sn/chitosan-) toothpaste (TP) on initial enamel erosion and abrasion. METHODS In total, 150 human premolar enamel specimens were ground, polished and divided into 5 toothpaste/rinse groups (n=30): (G1) placebo-TP/tap water, (G2) sodium fluoride (NaF-) TP/tap water, (G3) F/Sn/chitosan-TP/tap water, (G4) F/Sn/chitosan-TP/Sn-rinse, (G5) NaF-TP/NaF-rinse. The 8-day erosion-abrasion cyclic treatment (one cycle/day) consisted of incubating the samples in artificial saliva (30min), then submitting the samples to toothbrush abrasion (2min incubation in toothpaste slurry; brushing with 20 toothbrush strokes) and rinsing (2min; 10ml) with the respective solution: tap water (G1-G3), Sn-rinse (G4) or NaF-rinse (G5). Afterwards, the samples were submitted to erosion (2min; 30ml 1% citric acid, pH=3.6). Surface microhardness (SMH) was measured initially and after every abrasion and erosion treatment. Enamel substance loss was calculated after each abrasion. Non-parametric ANOVA followed by Wilcoxon rank tests were used for analysis. RESULTS G1 presented the greatest SMH decrease, while G4 presented the least SMH decrease (p<0.001). G3 had a similar SMH decrease to G2 and G5. Substance loss was significantly lower in G4 than all other groups (p<0.05), closely followed by G3. Both G2 and G5 showed similar calculated enamel substance loss to G1. CONCLUSION The treatment with F/Sn/chitosan-TP and tap water provided a similar SMH decrease to both NaF-TP groups, but significantly lower substance loss. F/Sn/Chitosan-TP and Sn-rinse showed a better preventive effect, which promoted less SMH decrease and reduced substance loss. CLINICAL SIGNIFICANCE The toothpaste containing fluoride, stannous and chitosan shows promising results in reducing substance loss from erosion and abrasion. The combination of this toothpaste with the stannous-containing rinse showed even better prevention against erosion-abrasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED CpG-oligodeoxynucleotides (CpG-ODNs) interact with dendritic cells (DCs), but evidence is less clear for CpG-ODN admixed with or incorporated into vaccine delivery vehicles. We loaded alginate-coated chitosan-nanogels (Ng) with class-A or class-B CpG-ODN, and compared with the same CpG-ODNs free or admixed with empty Ng. Experiments were performed on both porcine and human blood DC subpopulations. Encapsulation of class-A CpG-ODN (loading into Ng) strongly reduced the CpG-ODN uptake and intracellular trafficking in the cytosol; this was associated with a marked deficiency in IFN-α induction. In contrast, encapsulation of class-B CpG-ODN increased its uptake and did not influence consistently intracellular trafficking into the nucleus. The choice of CpG-ODN class as adjuvant is thus critical in terms of how it will behave with nanoparticulate vaccine delivery vehicles. The latter can have distinctive modulatory influences on the CpG-ODN, which would require definition for different CpG-ODN and delivery vehicles prior to vaccine formulation. FROM THE CLINICAL EDITOR This basic science study investigates the role of class-A and class-B CpG-oligodeoxynucleotides loaded into alginate-coated chitosan nanogels, demonstrating differential effects between the two classes as related to the use of these nanoformulations as vaccine delivery vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements-slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New toothpastes with anti-erosion claims are marketed, but little is known about their effectiveness. This study investigates these products in comparison with various conventional NaF toothpastes and tin-containing products with respect to their erosion protection/abrasion prevention properties. In experiment 1, samples were demineralised (10 days, 6 × 2 min/day; citric acid, pH 2.4), exposed to toothpaste slurries (2 × 2 min/day) and intermittently stored in a mineral salt solution. In experiment 2, samples were additionally brushed for 15 s during the slurry immersion time. Study products were 8 conventional NaF toothpastes (1,400-1,490 ppm F), 4 formulations with anti-erosion claims (2 F toothpastes: NaF + KNO(3) and NaF + hydroxyapatite; and 2 F-free toothpastes: zinc-carbonate-hydroxyapatite, and chitosan) and 2 Sn-containing products (toothpaste: 3,436 ppm Sn, 1,450 ppm F as SnF(2)/NaF; gel: 970 ppm F, 3,030 ppm Sn as SnF(2)). A mouth rinse (500 ppm F as AmF/NaF, 800 ppm Sn as SnCl(2)) was the positive control. Tissue loss was quantified profilometrically. In experiment 1, most NaF toothpastes and 1 F-free formulation reduced tissue loss significantly (between 19 and 42%); the Sn-containing formulations were the most effective (toothpaste and gel 55 and 78% reduction, respectively). In experiment 2, only 4 NaF toothpastes revealed significant effects compared to the F-free control (reduction between 29 and 37%); the F-free special preparations and the Sn toothpaste had no significant effect. The Sn gel (reduction 75%) revealed the best result. Conventional NaF toothpastes reduced the erosive tissue loss, but had limited efficacy regarding the prevention of brushing abrasion. The special formulations were not superior, or were even less effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supported Cu(II) polymer catalysts were used for the catalytic oxidation of phenol at 30 degrees C and atmospheric pressure using air and H(2)O(2) as oxidants. Heterogenisation of homogeneous Cu(II) catalysts was achieved by adsorption of Cu(II) salts onto polymeric matrices (poly(4-vinylpyridine), Chitosan). The catalytic active sites were represented by Cu(II) ions and showed to conserve their oxidative activity in heterogeneous catalysis as well as in homogeneous systems. The catalytic deactivation was evaluated by quantifying released Cu(II) ions in solution during oxidation, from where Cu-PVP(25) showed the best leaching levels no more than 5 mg L(-1). Results also indicated that Cu-PVP(25) had a catalytic activity (56% of phenol conversion when initial Cu(II) catalytic content was 200 mg L(Reaction)(-1)) comparable to that of commercial catalysts (59% of phenol conversion). Finally, the balance between activity and copper leaching was better represented by Cu-PVP(25) due to the heterogeneous catalytic activity had 86% performance in the heterogeneous phase, and the rest on the homogeneous phase, while Cu-PVP(2) had 59% and CuO/gamma-Al(2)O(3) 68%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly responsible for BX production, whereas the Igl gene is inducible by stress signals, such as wounding, herbivory, or jasmonates. To determine the role of BXs in defense against aphids and fungi, we compared basal resistance between Bx1 wild-type and bx1 mutant lines in the igl mutant background, thereby preventing BX production from IGL. Compared to Bx1 wild-type plants, BX-deficient bx1 mutant plants allowed better development of the cereal aphid Rhopalosiphum padi, and were affected in penetration resistance against the fungus Setosphaeria turtica. At stages preceding major tissue disruption, R. padi and S. turtica elicited increased accumulation of DIMBOA-glucoside, DIMBOA, and 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucoside (HDMBOA-glc), which was most pronounced in apoplastic leaf extracts. Treatment with the defense elicitor chitosan similarly enhanced apoplastic accumulation of DIMBOA and HDMBOA-glc, but repressed transcription of genes controlling BX biosynthesis downstream of BX1. This repression was also obtained after treatment with the BX precursor indole and DIMBOA, but not with HDMBOA-glc. Furthermore, BX-deficient bx1 mutant lines deposited less chitosan-induced callose than Bx1 wild-type lines, whereas apoplast infiltration with DIMBOA, but not HDMBOA-glc, mimicked chitosan-induced callose. Hence, DIMBOA functions as a defense regulatory signal in maize innate immunity, which acts in addition to its well-characterized activity as a biocidal defense metabolite.