14 resultados para Bacterias gram-negativas

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined the mechanism by which bacterial cell walls from two gram-positive meningeal pathogens, Streptococcus pneumoniae and the group B streptococcus, induced neuronal injury in primary cultures of rat brain cells. Cell walls from both organisms produced cellular injury to similar degrees in pure astrocyte cultures but not in pure neuronal cultures. Cell walls also induced nitric oxide production in cultures of astrocytes or microglia. When neurons were cultured together with astrocytes or microglia, the cell walls of both organisms became toxic to neurons. L-NAME, a nitric oxide synthase inhibitor, protected neurons from cell wall-induced toxicity in mixed cultures with glia, as did dexamethasone. In contrast, an excitatory amino acid antagonist (MK801) had no effect. Low concentrations of cell walls from either gram-positive pathogen added together with the excitatory amino acid glutamate resulted in synergistic neurotoxicity that was inhibited by L-NAME. The induction of nitric oxide production and neurotoxicity by cell walls was independent of the presence of serum, whereas endotoxin exhibited these effects only in the presence of serum. We conclude that gram-positive cell walls can cause toxicity in neurons by inducing the production of nitric oxide in astrocytes and microglia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify neurotoxic factors in meningitis, a neuronal cell line (HN33.1) was exposed to cerebrospinal fluid (CSF) obtained from rabbits with pneumococcal meningitis or Escherichia coli meningitis or 2 h and 6 h after meningitis was induced by proinflammatory bacterial products (pneumococcal cell walls, endotoxin). CSF from all types of meningitis induced similar degrees of cytotoxicity. When a soluble tumor necrosis factor (TNF) receptor that completely blocked TNF-mediated toxicity at 10(-7) M was used, all toxicity in meningitis caused by E. coli, endotoxin, or pneumococcal cell wall administration (2 h afterwards) was mediated by TNF. In contrast, CSF from animals with meningitis caused by live pneumococci or pneumococcal cell wall injection (6 h afterwards) retained cytotoxicity in the presence of the TNF receptor. Thus, in established pneumococcal meningitis, but not in the other forms of meningitis, TNF is not the only component toxic in this neuronal cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ninety strains of a collection of well-identified clinical isolates of gram-negative nonfermentative rods collected over a period of 5 years were evaluated using the new colorimetric VITEK 2 card. The VITEK 2 colorimetric system identified 53 (59%) of the isolates to the species level and 9 (10%) to the genus level; 28 (31%) isolates were misidentified. An algorithm combining the colorimetric VITEK 2 card and 16S rRNA gene sequencing for adequate identification of gram-negative nonfermentative rods was developed. According to this algorithm, any identification by the colorimetric VITEK 2 card other than Achromobacter xylosoxidans, Acinetobacter sp., Burkholderia cepacia complex, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia should be subjected to 16S rRNA gene sequencing when accurate identification of nonfermentative rods is of concern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the susceptibility of the gram-positive mastitis pathogens S. aureus, Str. uberis, Str. dysgalactiae, E. faecalis and L. garviae to antibiotics that are of epidemiological interest or are critically important for mastitis therapy and human medicine. Penicillin resistance was found to be most frequent in S. aureus, and nearly 5 % of the Str. uberis strains displayed a decreased susceptibility to this antibiotic. Resistance to aminoglycosides and macrolides was also detected in the strains tested. The detection of methicillin-resistant S. aureus (MRSA) and of a ciprofloxacin-resistant Str. dysgalactiae isolate corroborated the emergence of mastitis pathogens resistant to critically important antibiotics and underscores the importance of susceptibility testing prior to antibiotic therapy. The monitoring of antibiotic susceptibility patterns and antibiogram analyses are strongly recommended for targeted antimicrobial treatment and to avoid the unnecessary use of the latest generation of antibiotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Tn916-like transposon (TnFO1) was found in the multiple antibiotic resistant Enterococcus faecalis strain FO1 isolated from a raw milk cheese. In this strain, the tetracycline determinant was localized by DNA-DNA hybridization with a tetM nucleotide probe on the chromosome and on a 30-kb plasmid. The transposon TnFO1 was identified and characterized by DNA-DNA hybridization experiments with the five internal HincII fragments of Tn916. The tetracycline resistance determinant was identified by its complete nucleotide sequence as TetM. Transposon TnFO1 was also detected in its circular form by DNA-DNA hybridization and PCR amplification. Both ends including the joining region of the closed circular transposon TnFO1 were sequenced. TnFO1 could be transferred by conjugation from Enterococcus faecalis into Enterococcus faecalis, Lactococcus lactis subsp. lactis biovar. diacetylactis, Listeria innocua, Leuconostoc mesenteroides and Staphylococcus aureus, and from Lactococcus lactis subsp. lactis biovar. diacetylactis into Listeria innocua. Pulsed-field electrophoresis of genomic DNA from E. faecalis FO1 transconjugants showed that transposon TnFO1 integrated at different sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.