276 resultados para LUNG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic mountain sickness (CMS) is a major public health problem in mountainous regions of the world. In its more advanced stages, exercise intolerance is often found, but the underlying mechanism is not known. Recent evidence indicates that exercise-induced pulmonary hypertension is markedly exaggerated in CMS. We speculated that this problem may cause pulmonary fluid accumulation and aggravate hypoxemia during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern regarding recurrence of pre-transplant (Tx) malignancy has disqualified patients from Tx. Because this has been poorly studied in lung and heart Tx recipients our aim was to investigate the influence of pre-Tx malignancy on post-Tx recurrence and long-term survival, focusing on pre-operative cancer-free intervals.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BackgroundDespite the increasingly higher spatial and contrast resolution of CT, nodular lesions are prone to be missed on chest CT. Tinted lenses increase visual acuity and contrast sensitivity by filtering short wavelength light of solar and artificial origin.PurposeTo test the impact of Gunnar eyewear, image quality (standard versus low dose CT) and nodule location on detectability of lung nodules in CT and to compare their individual influence.Material and MethodsA pre-existing database of CT images of patients with lung nodules >5 mm, scanned with standard does image quality (150 ref mAs/120 kVp) and lower dose/quality (40 ref mAs/120 kVp), was used. Five radiologists read 60 chest CTs twice: once with Gunnar glasses and once without glasses with a 1 month break between. At both read-outs the cases were shown at lower dose or standard dose level to quantify the influence of both variables (eyewear vs. image quality) on nodule sensitivity.ResultsThe sensitivity of CT for lung nodules increased significantly using Gunnar eyewear for two readers and insignificantly for two other readers. Over all, the mean sensitivity of all radiologist raised significantly from 50% to 53%, using the glasses (P value = 0.034). In contrast, sensitivity for lung nodules was not significantly affected by lowering the image quality from 150 to 40 ref mAs. The average sensitivity was 52% at low dose level, that was even 0.7% higher than at standard dose level (P value = 0.40). The strongest impact on sensitivity had the factors readers and nodule location (lung segments).ConclusionSensitivity for lung nodules was significantly enhanced by Gunnar eyewear (+3%), while lower image quality (40 ref mAs) had no impact on nodule sensitivity. Not using the glasses had a bigger impact on sensitivity than lowering the image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.