224 resultados para Cerebral blood flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) is a novel therapeutic approach, used in patients with pharmacoresistant auditory verbal hallucinations (AVH). To investigate the neurobiological effects of TMS on AVH, we measured cerebral blood flow with pseudo-continuous magnetic resonance-arterial spin labeling 20 ± 6 hours before and after TMS treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p < 0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Patients with complex craniocerebral pathophysiologies such as giant cerebral aneurysms, skull base tumors, and/or carotid artery occlusive disease are candidates for a revascularization procedure to augment or preserve cerebral blood flow. However, the brain is susceptible to ischemia, and therefore the excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed to overcome temporary occlusion. Harvesting autologous vessels of reasonable quality, which is necessary for this technique, may at times be problematic or impossible due to the underlying systemic vascular disease. The use of artificial vessels is therefore an alternative graft for revascularization. Note, however, that it is unknown to what degree these grafts are subject to occlusion using the ELANA anastomosis technique. Therefore, the authors studied the ELANA technique in combination with an expanded polytetrafluoroethylene (ePTFE) graft. METHODS: The experimental surgeries involved bypassing the abdominal aorta in the rabbit. Ten rabbits were subjected to operations representing 20 ePTFE graft-ELANA end-to-side anastomoses. Intraoperative blood flow, followup angiograms, and long-term histological characteristics were assessed 75, 125, and 180 days postoperatively. Angiography results proved long-term patency of ePTFE grafts in all animals at all time points studied. Data from the histological analysis showed minimal intimal reaction at the anastomosis site up to 180 days postoperatively. Endothelialization of the ePTFE graft was progressive over time. CONCLUSIONS: The ELANA technique in combination with the ePTFE graft seems to have favorable attributes for end-to-side anastomoses and may be suitable for bypass procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is presently either performed using blood oxygenation level-dependent (BOLD) contrast or using cerebral blood flow (CBF), measured with arterial spin labeling (ASL) technique. The present fMRI study aimed to provide practical hints to favour one method over the other. It involved three different acquisition methods during visual checkerboard stimulation on nine healthy subjects: 1) CBF contrast obtained from ASL, 2) BOLD contrast extracted from ASL and 3) BOLD contrast from Echo planar imaging. Previous findings were replicated; i) no differences between the three measurements were found in the location of the activated region; ii) differences were found in the temporal characteristics of the signals and iii) BOLD has significantly higher sensitivity than ASL perfusion. ASL fMRI was favoured when the investigation demands for perfusion and task related signal changes. BOLD fMRI is more suitable in conjunction with fast event related design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study describes brain areas involved in medial temporal lobe (mTL) seizures of 12 patients. All patients showed so-called oro-alimentary behavior within the first 20 s of clinical seizure manifestation characteristic of mTL seizures. Single photon emission computed tomography (SPECT) images of regional cerebral blood flow (rCBF) were acquired from the patients in ictal and interictal phases and from normal volunteers. Image analysis employed categorical comparisons with statistical parametric mapping and principal component analysis (PCA) to assess functional connectivity. PCA supplemented the findings of the categorical analysis by decomposing the covariance matrix containing images of patients and healthy subjects into distinct component images of independent variance, including areas not identified by the categorical analysis. Two principal components (PCs) discriminated the subject groups: patients with right or left mTL seizures and normal volunteers, indicating distinct neuronal networks implicated by the seizure. Both PCs were correlated with seizure duration, one positively and the other negatively, confirming their physiological significance. The independence of the two PCs yielded a clear clustering of subject groups. The local pattern within the temporal lobe describes critical relay nodes which are the counterpart of oro-alimentary behavior: (1) right mesial temporal zone and ipsilateral anterior insula in right mTL seizures, and (2) temporal poles on both sides that are densely interconnected by the anterior commissure. Regions remote from the temporal lobe may be related to seizure propagation and include positively and negatively loaded areas. These patterns, the covarying areas of the temporal pole and occipito-basal visual association cortices, for example, are related to known anatomic paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Craving for alcohol is probably involved in acquisition and maintenance of alcohol dependence to a substantial degree. However, the brain substrates and mechanisms that underlie alcohol craving await more detailed elucidation. METHOD: Positron emission tomography was used to map regional cerebral blood flow (CBF) in 21 detoxified patients with alcohol dependence during exposure to alcoholic and non-alcoholic beverages. RESULTS: During the alcohol condition compared with the control condition, significantly increased CBF was found in the ventral putamen. Additionally, activated areas included insula, dorsolateral prefrontal cortex and cerebellum. Cerebral blood flow increase in these regions was related to self-reports of craving assessed in the alcoholic patients. CONCLUSIONS: In this investigation, cue-induced alcohol craving was associated with activation of brain regions particularly involved in brain reward mechanisms, memory and attentional processes. These results are consistent with studies on craving for other addictive substances and may offer strategies for more elaborate studies on the neurobiology of addiction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences in cytochemical and pathophysiologic abnormalities in experimental meningitis caused by pneumococcal strains A, B, and C were determined. Strain C produced the most severe abnormalities of cerebrospinal fluid (CSF) concentrations of lactate (P less than .01), protein (P less than .02), and glucose (P less than .01), CSF white blood cell count (P less than .04), cerebral blood flow (P less than .02), and clinical signs (P less than .05). Brain edema occurred only with strains A anc C, with no association with disease severity; intracranial hypertension was also independent of disease severity. Strain B, not C, achieved the highest bacterial titers in the CSF (P less than .005). The widely different abilities of strains of Streptococcus pneumoniae to induce intracranial abnormalities suggest that virulence determinants affect not only evasion of defense during colonization and invasion, as shown in other models, but also determine the course of disease once infection has been established. Differences of cell-wall metabolism among pneumococcal strains may play a role in this latter phase of the development of meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropeptide Y (NPY), which is found in high concentrations in several regions of the brain including nuclei of the brain stem and in nerve fibers surrounding cerebral vessels, has been proposed to play a role in regulating cerebral blood flow (CBF) and systemic vegetative functions. Since CBF is altered during meningitis, we examined whether NPY concentrations changed in various regions of the rabbit brain in response to experimental pneumococcal meningitis. Changes were most pronounced in the medulla, where NPY concentration increased threefold after 48 h of infection. Concomitantly, there was an increase in NPY immunoreactive fibers surrounding small vessels in the dorsolateral medulla, especially in the nucleus tractus solitarius. These results suggest that NPY may play a role in inducing some of the hemodynamic changes seen during pneumococcal meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. MATERIALS AND METHODS: Twelve anaesthetized pigs (26+/-1kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a p<0.05 was considered statistically significant. RESULTS: IPPV was associated with cyclic alveolar recruitment and de-recruitment. Compared with controls, the CCO-CPR group had a significantly larger mean fractional area of atelectasis (p=0.009), and significantly lower PaO(2) (p=0.002) and mean arterial pressure (p=0.023). The increase in mean atelectatic lung area observed during basic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. CONCLUSION: A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delayed ischemic neurological deficit (DIND) following cerebral vasospasm remains a cause for high morbidity and mortality in patients with subarachnoid hemorrhage (SAH). There is experimental and clinical evidence of positive effects of nitric oxide (NO) donors on cerebral vasospasm. We therefore analysed the effect of transdermal nitroglycerin in patients with SAH measuring transcranial Doppler velocities (TCD), cerebral blood flow (CBF) and DIND. Nitroglycerin was used in a target dose of 14 microg/kg/h. TCD assessment was performed daily. CBF measurements were done using the perfusion CT-technique. Blood pressure, volume intake and vasopressor administration, were registered. Nine patients were randomly assigned either to the nitroglycerin group (N-group) and eight patients in the control group (C-group). Mean TCD values in the extracranial portion of the internal carotid artery (ICA) were lower in the N-group (p<0.005). Mean TCD in the middle cerebral arteries (MCA) showed no difference. The Lindegaard ratio was higher in the N-group (p<0.04). CBF in the N-group was higher than in the C-group (p<0.03). Even though nitroglycerin reduces blood pressure and lowers ICA TCD-values and increases the Lindegaard ratio, a higher CBF was measured in the N-group. Thus, nitroglycerin influences the cerebral vascular tone and increases CBF. SAH therapy with nitroglycerin is possible without increasing the risk of DIND. The exact timing of onset, duration and reduction of nitroglycerin administration in respect to the appearance of vasospasm may have a strong impact on the success of such a therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms causing brain damage after acute subdural hematoma (SDH) are poorly understood. A decrease in cerebral blood flow develops immediately after the hematoma forms, thus reducing cerebral oxygenation. This in turn may activate mitochondrial failure and tissue damage leading to ionic imbalance and possibly to cellular breakdown. The purpose of this study was to test whether a simple therapeutic measure, namely increased fraction of inspired oxygen (FiO2 100), and hence increased arterial and brain tissue oxygen tension, can influence brain glucose and lactate dynamics acutely after subdural hematoma in the rat. Twenty-five male Sprague-Dawley anesthetized rats were studied before, during and after induction of the SDH in two separate groups. The Oxygen group (n = 10) was ventilated with 100% oxygen immediately after induction of the SDH. The Air group (n = 10) was ventilated during the entire study with 21% oxygen. Brain microdialysate samples were analyzed for glucose and lactate. All rats were monitored with femoral arterial blood pressure catheters, arterial blood gas analysis, arterial glucose, lactate and end tidal CO2 (EtCO2). Five male Sprague-Dawley rats were sham operated to measure the effect of oxygen challenge on glucose-lactate dynamics without injury. Arterial oxygen tension in the Oxygen group was 371 +/- 30 mmHg and was associated with significantly greater increase in dialysate lactate in the first 30 min after induction of SDH. Dialysate glucose initially dropped in both groups, after SDH, but then reverted significantly faster to values above baseline in the Oxygen group. Changes in ventilatory parameters had no significant effect on dialysate glucose and lactate parameters in the sham group. Extracellular dialysate lactate and glucose are influenced by administration of 100% O2 after SDH. Dialysate glucose normalizes significantly quicker upon 100% oxygen ventilation. We hypothesize that increased neural tissue oxygen tension, in presence of reduced regional CBF, and possibly compromised mitochondrial function, after acute SDH results in upregulation of rate-limiting enzyme systems responsible for both glycolytic and aerobic metabolism. Similar changes have been seen in severe human head injury, and suggest that a simple therapeutic measure, such as early ventilation with 100% O2, may improve cerebral energy metabolism, early after SDH. Further studies to measure the generation of adenosine triphosphate (ATP) are needed to validate the hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Early impairment of cerebral blood flow in patients with severe head injury correlates with poor brain tissue O2 delivery and may be an important cause of ischemic brain damage. The purpose of this study was to measure cerebral tissue PO2, lactate, and glucose in patients after severe head injury to determine the effect of increased tissue O2 achieved by increasing the fraction of inspired oxygen (FiO2). METHODS: In addition to standard monitoring of intracranial pressure and cerebral perfusion pressure, the authors continuously measured brain tissue PO2, PCO2, pH, and temperature in 22 patients with severe head injury. Microdialysis was performed to analyze lactate and glucose levels. In one cohort of 12 patients, the PaO2 was increased to 441+/-88 mm Hg over a period of 6 hours by raising the FiO2 from 35+/-5% to 100% in two stages. The results were analyzed and compared with the findings in a control cohort of 12 patients who received standard respiratory therapy (mean PaO2 136.4+/-22.1 mm Hg). The mean brain PO2 levels increased in the O2-treated patients up to 359+/-39% of the baseline level during the 6-hour FiO2 enhancement period, whereas the mean dialysate lactate levels decreased by 40% (p < 0.05). During this O2 enhancement period, glucose levels in brain tissue demonstrated a heterogeneous course. None of the monitored parameters in the control cohort showed significant variations during the entire observation period. CONCLUSIONS: Markedly elevated lactate levels in brain tissue are common after severe head injury. Increasing PaO2 to higher levels than necessary to saturate hemoglobin, as performed in the O2-treated cohort, appears to improve the O2 supply in brain tissue. During the early period after severe head injury, increased lactate levels in brain tissue were reduced by increasing FiO2. This may imply a shift to aerobic metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.