41 resultados para periodontal disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a clinical decision tree based on knowledge about risks and reported outcomes of therapy is a necessity for successful planning and outcome of periodontal therapy. This requires a well-founded knowledge of the disease entity and a broad knowledge of how different risk conditions attribute to periodontitis. The infectious etiology, a complex immune response, and influence from a large number of co-factors are challenging conditions in clinical periodontal risk assessment. The difficult relationship between independent and dependent risk conditions paired with limited information on periodontitis prevalence adds to difficulties in periodontal risk assessment. The current information on periodontitis risk attributed to smoking habits, socio-economic conditions, general health and subjects' self-perception of health, is not comprehensive, and this contributes to limited success in periodontal risk assessment. New models for risk analysis have been advocated. Their utility for the estimation of periodontal risk assessment and prognosis should be tested. The present review addresses several of these issues associated with periodontal risk assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of periodontitis and cardiovascular disease (CVD) is high. A mixed infectious biofilm etiology of periodontitis is known but not fully established in CVD. Cofactors; smoking habits, stress, ethnicity, genetics, socioeconomics and age contribute to both diseases. The objectives of this report are to summarize factors in regards to CVD and periodontitis that are clinically relevant. The hypothesis behind a relationship between the two conditions can be founded in (I) shared infections etiology, (II) shared inflammatory response, (III) epidemiological and case-control studies, and (IV) periodontal studies demonstrating improvements of CVD markers. Streptococcus species in the S. mitis group, and S. anginosus group have been identified in periodontitis and are known as pathogens in endocarditis possibly transported from the oral cavity to the heart through bacteremia during dental therapies, and tooth brushing. Other periodontal bacteria such as Porphyromonas gingivalis, Fusobacterium nucleatum and Parvimonas micra are beta-lactamase producing and may contribute to antibiotic resistance (extended spectrum beta-lactamases). Other bacteria in CVD and periodontitis include Staphylococcus aureus, and Pseudomonas aeruginosa. Chlamydia pneumoniae and P. gingivalis lipopolyysaccharide capsels share homology and induce heat-shock protein activity and a cascade of proinflammatory cytokines. Associations between periodontitis and CVD have been presented in many studies when controlling for confounders. Other studies have demonstrated that periodontal therapies increase brachial artery flow rate and reduce serum inflammatory cytokine levels. Thus, physicians caring for subjects at CVD risk should consult with dentists/periodontists. Dentists must improve their medical knowledge and also learn to consult with physicians when treating patients at CVD risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To analyze the subgingival microflora composition of inflammatory bowel disease (IBD) patients with untreated chronic periodontitis and compare them with systemically healthy controls also having untreated chronic periodontitis. METHOD Thirty IBD patients [15 with Crohn's disease (CD) and 15 with ulcerative colitis (UC)] and 15 control individuals participated in the study. All patients had been diagnosed with untreated chronic periodontitis. From every patient, subgingival plaque was collected from four gingivitis and four periodontitis sites with paper points. Samples from the same category (gingivitis or periodontitis) in each patient were pooled together and stored at -70 °C until analysis using a checkerboard DNA-DNA hybridization technique for 74 bacterial species. RESULTS Multiple-comparison analysis showed that the groups differed in bacterial counts for Bacteroides ureolyticus, Campylobacter gracilis, Parvimonas micra, Prevotella melaninogenica, Peptostreptococcus anaerobius, Staphylococcus aureus, Streptococcus anginosus, Streptococcus intermedius, Streptococcus mitis, Streptococcus mutans, and Treponema denticola (P<0.001). CD patients had significantly higher levels of these bacteria than UC patients either in gingivitis or in periodontitis sites (P<0.05). CD patients harbored higher levels of P. melaninogenica, S. aureus, S. anginosus, and S. mutans compared with controls both at gingivitis and at periodontitis sites (P<0.05). UC patients harbored higher levels of S. aureus (P=0.01) and P. anaerobius (P=0.05) than controls only in gingivitis sites. CONCLUSION Our study showed that even with similar clinical periodontal parameters, IBD patients harbor higher levels of bacteria that are related to opportunistic infections in inflamed subgingival sites that might be harmful for the crucial microbe-host interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The oral cavity is frequently affected in patients with inflammatory bowel disease (IBD), especially in patients with Crohn's disease (CD). Periodontitis is thought to influence systemic autoimmune or inflammatory diseases. We aimed to analyze the relationship of periodontitis and gingivitis markers with specific disease characteristics in patients with IBD and to compare these data with healthy controls. METHODS: In a prospective 8-month study, systematic oral examinations were performed in 113 patients with IBD, including 69 patients with CD and 44 patients with ulcerative colitis. For all patients, a structured personal history was taken. One hundred thirteen healthy volunteers served as a control group. Oral examination focussed on established oral health markers for periodontitis (bleeding on probing, loss of attachment, and periodontal pocket depth) and gingivitis (papilla bleeding index). Additionally, visible oral lesions were documented. RESULTS: Both gingivitis and periodontitis markers were higher in patients with IBD than in healthy control. In univariate analysis and logistic regression analysis, perianal disease was a risk factor for periodontitis. Nonsmoking decreased the risk of having periodontitis. No clear association was found between clinical activity and periodontitis in IBD. In only the CD subgroup, high clinical activity (Harvey-Bradshaw index > 10) was associated with 1 periodontitis marker, the loss of attachment at sites of maximal periodontal pocket depth. Oral lesions besides periodontitis and gingivitis were not common, but nevertheless observed in about 10% of patients with IBD. CONCLUSIONS: IBD, and especially perianal disease in CD, is associated with periodontitis. Optimal therapeutic strategies should probably focus on treating both local oral and systemic inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactive molecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL) cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGFβ1, and VEGFA) and transcription (RUNX2) factors as well as matrix molecules (collagen, and periostin) and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-α expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To assess the association between presence of periodontal pathogens and recurrence of disease in patients with aggressive periodontitis (AgP) after active periodontal therapy (APT) and further influencing factors. MATERIAL & METHODS Microbiological samples were taken from 73 patients with AgP 5-17 years after APT at 292 sites (deepest site per quadrant). Real-time polymerase chain reactions were used to detect the periodontal pathogens Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola. Uni- and multivariate analyses evaluated the associations between pathogens and recurrence of disease, smoking and adjunctive antibiotic therapy. RESULTS At re-examination A. actinomycetemcomitans could be detected in six patients (8.2%), P. gingivalis in 24 (32.9%), T. forsythia in 31 (42.5%) and T. denticola in 35 (48.0%). Increased levels of T. forsythia and T. denticola at re-examination were significantly associated with recurrence of disease in multivariate analyses (OR: 12.72, p < 0.001; OR 5.55, p = 0.002 respectively). Furthermore, high counts of T. denticola were found in patients with increased percentage of sites with clinical attachment levels (CAL) ≥ 6 mm compared to those with low counts (13.8% versus 3.2%, p = 0.005). CONCLUSION In patients with recurrence of disease T. forsythia and T. denticola were detected more frequently and in higher counts. Furthermore, T. denticola was found more frequently in patients with increased CAL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontitis is a chronic inflammatory disease of the periodontium, which is caused by pathogenic bacteria in combination with other risk factors. The bacteria induce an immunoinflammatory host response, which can lead to irreversible matrix degradation and bone resorption. Periodontitis can be successfully treated. To achieve regenerative periodontal healing, bioactive molecules, such as enamel matrix derivative (EMD), are applied during periodontal surgery. Recently, it has been shown that obesity is associated with periodontitis and compromised healing after periodontal therapy. The mechanisms underlying these associations are not well understood so far, but adipokines may be a pathomechanistic link. Adipokines are bioactive molecules that are secreted by the adipose tissue, and that regulate insulin sensitivity and energy expenditure, but also inflammatory and healing processes. It has also been demonstrated that visfatin and leptin increase the synthesis of proinflammatory and proteolytic molecules, whereas adiponectin downregulates the production of such mediators in periodontal cells. In addition, visfatin and leptin counteract the beneficial effects of EMD, whereas adiponectin enhances the actions of EMD on periodontal cells. Since visfatin and leptin levels are increased and adiponectin levels are reduced in obesity, these adipokines could be a pathomechanistic link whereby obesity and obesity-related diseases enhance the risk for periodontitis and compromised periodontal healing. Recent studies have also revealed that adipokines, such as visfatin, leptin and adiponectin, are produced in periodontal cells and regulated by periodontopathogenic bacteria. Therefore, adipokines may also represent a mechanism whereby periodontal infections can impact on systemic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Although regenerative treatment options are available, periodontal regeneration is still regarded as insufficient and unpredictable. AIM This review article provides scientific background information on the animated 3D film Cell-to-Cell Communication - Periodontal Regeneration. RESULTS Periodontal regeneration is understood as a recapitulation of embryonic mechanisms. Therefore, a thorough understanding of cellular and molecular mechanisms regulating normal tooth root development is imperative to improve existing and develop new periodontal regenerative therapies. However, compared to tooth crown and earlier stages of tooth development, much less is known about the development of the tooth root. The formation of root cementum is considered the critical element in periodontal regeneration. Therefore, much research in recent years has focused on the origin and differentiation of cementoblasts. Evidence is accumulating that the Hertwig's epithelial root sheath (HERS) has a pivotal role in root formation and cementogenesis. Traditionally, ectomesenchymal cells in the dental follicle were thought to differentiate into cementoblasts. According to an alternative theory, however, cementoblasts originate from the HERS. What happens when the periodontal attachment system is traumatically compromised? Minor mechanical insults to the periodontium may spontaneously heal, and the tissues can structurally and functionally be restored. But what happens to the periodontium in case of periodontitis, an infectious disease, after periodontal treatment? A non-regenerative treatment of periodontitis normally results in periodontal repair (i.e., the formation of a long junctional epithelium) rather than regeneration. Thus, a regenerative treatment is indicated to restore the original architecture and function of the periodontium. Guided tissue regeneration or enamel matrix proteins are such regenerative therapies, but further improvement is required. As remnants of HERS persist as epithelial cell rests of Malassez in the periodontal ligament, these epithelial cells are regarded as a stem cell niche that can give rise to new cementoblasts. Enamel matrix proteins and members of the transforming growth factor beta (TGF-ß) superfamily have been implicated in cementoblast differentiation. CONCLUSION A better knowledge of cell-to-cell communication leading to cementoblast differentiation may be used to develop improved regenerative therapies to reconstitute periodontal tissues that were lost due to periodontitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase.