113 resultados para activation induced cell death


Relevância:

100.00% 100.00%

Publicador:

Resumo:

HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR) into hair cells from three-day-old Cdh23(+/+) and Cdh23(v2J/+) mice, but failed to detect GTTR uptake in Cdh23(v2J/v2J) hair cells. Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23(v2J/v2J) and BAPTA-treated hair cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Programmed cell death 1 (PD-1) receptor triggering by PD ligand 1 (PD-L1) inhibits T cell activation. PD-L1 expression was detected in different malignancies and associated with poor prognosis. Therapeutic antibodies inhibiting PD-1/PD-L1 interaction have been developed. MATERIALS AND METHODS A tissue microarray (n=1491) including healthy colon mucosa and clinically annotated colorectal cancer (CRC) specimens was stained with two PD-L1 specific antibody preparations. Surgically excised CRC specimens were enzymatically digested and analysed for cluster of differentiation 8 (CD8) and PD-1 expression. RESULTS Strong PD-L1 expression was observed in 37% of mismatch repair (MMR)-proficient and in 29% of MMR-deficient CRC. In MMR-proficient CRC strong PD-L1 expression correlated with infiltration by CD8(+) lymphocytes (P=0.0001) which did not express PD-1. In univariate analysis, strong PD-L1 expression in MMR-proficient CRC was significantly associated with early T stage, absence of lymph node metastases, lower tumour grade, absence of vascular invasion and significantly improved survival in training (P=0.0001) and validation (P=0.03) sets. A similar trend (P=0.052) was also detectable in multivariate analysis including age, sex, T stage, N stage, tumour grade, vascular invasion, invasive margin and MMR status. Interestingly, programmed death receptor ligand 1 (PDL-1) and interferon (IFN)-γ gene expression, as detected by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in fresh frozen CRC specimens (n=42) were found to be significantly associated (r=0.33, P=0.03). CONCLUSION PD-L1 expression is paradoxically associated with improved survival in MMR-proficient CRC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prematurely born babies are often treated with glucocorticoids. We studied the consequences of an early postnatal and short dexamethasone treatment (0.1-0.01 microg/g, days 1-4) on lung development in rats, focusing on its influence on peaks of cell proliferation around day 4 and of programmed cell death at days 19-21. By morphological criteria, we observed a dexamethasone-induced premature maturation of the septa (day 4), followed by a transient septal immatureness and delayed alveolarization leading to complete rescue of the structural changes. The numbers of proliferating (anti-Ki67) and dying cells (TdT-mediated dUTP nick end labeling) were determined and compared with controls. In dexamethasone-treated animals, both the peak of cell proliferation and the peak of programmed cell death were reduced to baseline, whereas the expression of tissue transglutaminase (transglutaminase-C), another marker for postnatal lung maturation, was not significantly altered. We hypothesize that a short neonatal course of dexamethasone leads to severe but transient structural changes of the lung parenchyma and influences the balance between cell proliferation and cell death even in later stages of lung maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the prognostic significance of apoptosis related markers in bladder cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Although the importance of autophagy for cell homeostasis and survival has long been appreciated, our understanding of how autophagy is regulated at a molecular level just recently evolved. The importance of autophagy for the quality control of proteins is underscored by the fact that many neurodegenerative and myodegenerative diseases are characterized by an increased but still insufficient autophagic activity. Similarly, if the cellular stress, leading to deoxyribonucleic acid (DNA) damage, mitochondrial damage and/or damaged proteins, does not result in sufficient autophagic repair mechanisms, cells seem to be prone to transform into tumour cells. Therefore, autophagy has multiple roles to play in the causation and prevention of human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the possible initiating factors in canine cranial cruciate ligament (CCL) rupture could be an abnormal pattern of ligament cell death. This study compared apoptotic cell death in sections of ruptured CCLs and normal controls, and examined nitric oxide (NO) production in joint tissues and correlated this to apoptosis. CCLs and cartilage from the lateral femoral condyle were harvested from 10 healthy dogs and 15 dogs with CCL rupture and ligaments were further processed to detect cleaved caspase-3 and to determine supernatant NO production in explant cultures. Apoptotic activity was greater in ruptured ligaments compared to controls. NO in ligaments showed a moderate but significant positive correlation with caspase-positive cells. The results suggest that increased apoptosis has a role in CCL rupture and that apoptosis may be influenced by local NO production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: The induction of tumour cell death by apoptosis is a major goal of cancer therapy and the in situ detection of apoptosis in tumour tissue has become an important diagnostic parameter. Different apoptosis detection methods assess distinct biochemical processes in the dying cell. Thus, their direct comparison is mandatory to evaluate their diagnostic value. The aim of this study was to compare the immunohistochemical detection of active caspase 3 and single-stranded DNA in primary and metastatic liver tumours as markers of apoptotic cell death. METHODS: We studied detection of active caspase 3 and single-stranded DNA in 20 primary hepatocellular carcinomas (HCC) and 20 liver metastases from colorectal carcinomas (CRC) using immunohistochemistry on paraffin sections. RESULTS: Our results reveal that both methods are suitable and sensitive techniques for the in situ detection of apoptosis, however, they also demonstrate that immunohistochemistry for active caspase 3 and single-stranded DNA have differential sensitivities in HCC and CRC. CONCLUSION: The sensitivity of apoptosis detection using immunohistochemistry for active caspase 3 and single-stranded DNA may be tumour cell type dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis is a key mechanism in the build up and maintenance of both innate and adaptive immunity as well as in the regulation of cellular homeostasis in almost every organ and tissue. Central to the apoptotic process is a family of intracellular cysteine proteases with aspartate-specificity, called caspases. Nevertheless, there is growing evidence that other non-caspase proteases, in particular lysosomal cathepsins, can play an important role in the regulation of apoptosis. In this review, the players and the molecular mechanisms involved in the lysosomal apoptotic pathways will be discussed as well as the importance of these pathways in the immune system and the pathogenesis of diseases.